The Legendre-Type Polynomials and the Laguerre-Type Polynomials in a Sobolev Space

  • Allan M. Krall
Part of the Operator Theory: Advances and Applications book series (OT, volume 133)


We give only the highlights of these examples. That the polynomials are orthogonal is relatively easy, but showing that the differential operators, when restricted, remain self-adjoint is more difficult. We refer the interested reader to [3] and [4], for the details, which are quite complicated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. N. Everitt, A. M. Krall and L. L. Littlejohn, On some properties of the Legendre-type differential expression, Quaes. Math. 13 (1990), 83–108.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    A. M. Krall and L. L. Littlejohn —, Differential operators and the Laguerre-type polynomials, SIAM J. Math. Anal. 23 (1992), 722–736.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. M. Krall, W. N. Everitt and L. L. Littlejohn, The Legendre-type operator in a left definite Hilbert space, Quaes. Math. 15 (1992), 467–475.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    W. N. Everitt and L. L. Littlejohn —, The Laguerre-type operator in a left definite Hiilbert space, J. Math. Anal. Appl. 192 (1995), 460–468.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    L. L. Littlejohn and R. Wellman, Left-definite spectral theory with applications to differential operators, manuscript.Google Scholar
  6. [6]
    L. L. Littlejohn, J. Arvesu and F. Marcellan, On the right-definite and left-definite spectral theory of the Legendre polynomials, manuscript.Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Allan M. Krall
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations