Differential Operators in Sobolev Spaces

  • Allan M. Krall
Part of the Operator Theory: Advances and Applications book series (OT, volume 133)


Perhaps the subject of this chapter was motivated by the solution of the unitless equation of vibrating motion
$$y\prime \prime + y = 0.$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.I. Akhiezer and I. M. Glazman, Theory of Linear Operators in a Hilbert Space, vol. I, Fredrick Ungar, New York, 1963.Google Scholar
  2. [2]
    A. M. Krall, Left Definite Theory for Second Order Differential Operators with Mixed Boundary conditions, J. Diff. Eq. 118 (1995), 153–165.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    —, Left Definite Regular Hamiltonian Systems, Math. Nachr. 174 (1995), 203–217.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    —, Singular Left-Definite Boundary Value Problems, Indian J. Pure Appl. Math. 29 (1998), 29–36.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. M. Krall and D. Race Self-Adjointness for the Weyl Problem Under an Energy Norm, Quaes. Math. 18 (1995), 407–426.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. Schneider and H. D. Niessen, Linksdefinite singuläre kanonische Eigenwertprobleme I, J. f. d. reine ang. Math. 281 (1976), 13–52.MathSciNetzbMATHGoogle Scholar
  7. [7]
    H. D. Niessen —, Linksdefinite singuläre kanonische Eigenwertprobleme, II, J. f. d. reine ang. Math. 289 (1977), 62–84.Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Allan M. Krall
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations