Skip to main content

Infrasonic Signal Detection and Source Location at the Prototype International Data Centre

  • Chapter
Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Data Processing and Infrasound

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

This paper describes an automatic and interactive data processing system designed to locate impulsive atmospheric sources with a yield of at least one kiloton by detecting and characterizing the airborne infrasound radiated by the source. The infrasonic processing subsystem forms part of a larger system currently under development at the Prototype International Data Center (PIDC) in Arlington, Virginia where seismic, hydroacoustic, radionuclide and infrasonic methods are used to detect and locate impulsive sources in any terrestrial environment. Infrasonic signal detection is achieved via a coincidence detector which requires both the normalized cross correlation and the short-term-average/ long-term-average ratio of a beam in the direction of maximum correlation to exceed predetermined threshold values simultaneously before a detection is declared.The infrasound propagation model currently used to infer travel-time information assumes the horizontal sound speed across the ground to be 320.0 m/s. This crude model is currently being replaced by a model which predicts travel-time information through a ray-tracing algorithm for acoustic waves in an atmosphere with seasonal representations for temperature and wind. A novel feature of the source location process is the fusion of all available arrival information, whether it be seismic, hydroacoustic or infrasonic to locate a single source where it is reasonable to hypothesize a common source. In its final configuration the infrasonic subsystem will routinely process data from the global 60-station International Monitoring System (IMS) infrasonic network currently under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bedard, A. J., Greene, G. E., Intrieri, J., and Rodrigues, R. (1988), On the Feasibility and Value of Detecting and Characterizing Avalanches Remotely by Monitoring Radiated Subaudible Atmospheric Sound at Long Distances, Engineering Foundation Conference, Santa Barbara, CA.

    Google Scholar 

  • Blandford, R. R. (1974), An Automatic Event Detector at the TONTO FORREST Seismic Observatory, Geophys. 39(5), 633–643.

    Article  Google Scholar 

  • Bowman, H. S., and Bedard, A. J. (1971), Observations of Infrasound and Subsonic Disturbances Related to Severe Weather, Geophys. 1.R. Astr. Soc. 20, 215.

    Google Scholar 

  • Brown, R. F. (1963), An Automatic Multichannel-correlator, 1. Res. Nat. Bur. Stand. 67C, 33–38.

    Google Scholar 

  • Christie, D. R. (1998), Establishment of the IMS Infrasound Network-Scientific and Technical Issues. In Proceedings of the Informal workshop on Infrasounds, Bruyeres-Le-Chatel, France.

    Google Scholar 

  • Dighe, K. A., Whitaker, R. W., and Armstrong, W. T. (1998), Modelling Study of Infrasonic Detection of 1 kT Atmospheric Blast. In Proceedings, 20th Annual Seismic Research Symposium On Monitoring a Comprehensive Test-Ban Treaty, Santa Fe NM, September 21–23, 571–578.

    Google Scholar 

  • DOE-1994, (1994)United States Nuclear Tests: July, 1945 through September, 1992, Department of Energy Technical Report DOEJNV-209 (Rev. 14).

    Google Scholar 

  • Donn, W. L., and Ewing, M. (1962), Atmospheric Waves from Nuclear Explosions, J. Geophys. Res. 67, 1855–1866.

    Article  Google Scholar 

  • Donn, W. L., and Shaw, D. M. (1967), Exploring the Atmosphere with Nuclear Explosions, Rev. Geophys. 5(1), 53–82.

    Article  Google Scholar 

  • Donn, W. L., Shaw, D. M., and Hubbard, A. C. (1963), The Microbarographic Detection of Nuclear Explosions, IEEE Trans. Nuc. Sci. NS-10, 285–296.

    Article  Google Scholar 

  • Flanagan, M. P., Lebras, R. J., Hanson, J., and Jenkins, R. (1999), Analysis of Two Mining Explosions Recorded at TXAR Seismic and Infrasound Arrays, Report No. SAIC-99/3002, Science Applications International Corporation, San Diego, CA.

    Google Scholar 

  • Garces, M. A., Hansen, R. A., and Lindquist, K. G. (1998), Traveltimes for Infrasonic Waves Propagating in a Stratified Atmosphere, Geophys. J. Int. 135, 255–263.

    Article  Google Scholar 

  • Georges, T. M. (1972), 3-D ray-tracing for acoustic gravity waves. In Proc. Con! on Effects of Acoustic Gravity Waves on Electromagnetic Wave Propagation, AGARD Proc. No. 115: 2–1 to 2–8.

    Google Scholar 

  • Georges, T. M. (1973), Infrasound from Convective storms: Examining the evidence, Rev. Geoph. And Space Phys., 11,571–594.

    Article  Google Scholar 

  • Gossard, E. E., and Hooke, W. H., Waves in the Atmosphere, (Elsevier Scientific Publishing Co., New York. 1975).

    Google Scholar 

  • Gutenberg, B. (1939), The Velocity of Sound Waves and the Temperature in the Stratosphere in Southern California, Bull. Am. Met. Soc. 20, 192–201.

    Google Scholar 

  • Harkrider, D. G. (1964), Theoretical and Observed Acoustic Gravity Waves from Explosive Sources in the Atmosphere, J. Geophys. Res. 69, 5295–5321.

    Article  Google Scholar 

  • Hedin, A. E. (1991), Extension of the MSIS Thermosphere Model in the Middle and Lower Atmosphere, J. Geoph. Res. 96, 1159–1172.

    Article  Google Scholar 

  • Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., Vial, F., and Vincent, R. A. (1996), Empirical Wind Model for the Upper, Middle and Lower Atmosphere, J. Atmos. Terr. Phys. 58, 1421–1444.

    Article  Google Scholar 

  • Katz, Charles, N. (1999), Comparison of Infrasound Detectors Using Alternative Detection Statistics: Normalized Cross-Correlation Functions versus the F-Statistic, SAIC Internal Technical Report, Monitoring Systems Operation.

    Google Scholar 

  • Kennett, B. L. N. (1991)IASPEI, 1991 Seismological Tables, Research School of Earth Sciences, Australian National University, 167 pp.

    Google Scholar 

  • Kerr, A. U. (1971), Digital Computer Programs for Recording and Processing Infrasonic Array Data, Geophys. J. R. Astr. Soc. 26, 21–40.

    Article  Google Scholar 

  • Kulichkov, S. N. (1998), On Problems of Infrasonic Monitoring of Small-energy Explosions. In Proceedings of the Informal Workshop on Infrasound, Bruyeres-le-Chatel, France.

    Google Scholar 

  • Lindeman, F. A., and Dobson, G. M. B., (1923), A Theory of Meteors, and the Density and Temperature of the Outer Atmosphere to which it Leads, Proc. Roy. Soc. 102, 411–437.

    Article  Google Scholar 

  • McKisic, J. M. (1997), Infrasound and the Infrasonic Monitoring of Atmospheric Nuclear Explosions, Report No. PL-TR-97–2123, Phillips Laboratory, 310 pp.

    Google Scholar 

  • Milne, E. A. (1921)Sound Waves in the Atmosphere, Phil. Mag. 42, 96–114.

    Google Scholar 

  • Pfeffer, R., and Zarichny, J. (1962), Acoustic Gravity Wave Propagation from Nuclear Explosions in the Earth’s Atmosphere, J. Atmos. Sci. 5, 256–263.

    Article  Google Scholar 

  • Pierce, A. D., and Posey, J. W. (1970), Theoretical Predictions of Acoustic-gravity Pressure Waveforms Generated by Large Explosions in the Atmosphere., Prepared for Air Force Cambridge Research Laboratories, Office of Aerospace Research, USAF, Bedford, MA.

    Google Scholar 

  • Press, F., and Harkrider, D. G. (1962), Propagation of Acoustic Gravity Waves in the Atmosphere, J. Geophys. Res. 67, 3889–3908.

    Article  Google Scholar 

  • Smart, E., and Flinn, E. A. (1971), Fast Frequency-Wavenumber Analysis and Fisher Signal Detection in Real-Time Infrasonic Array Data Processing, Geophys. J. R. Astr. Soc. 26, 279–284.

    Article  Google Scholar 

  • Veloso, J. A. (1998), Establishment of the IMS Infrasound Network. In Proceedings of the Informal Workshop on Infrasounds, Bruyeres-Le-Chatel, France.

    Google Scholar 

  • Wang, J. (1999), Signal Detection and Estimation at the New IMS Array at Mina. In Proceedings of the 21st Annual Seismic Research Symposium, Las Vegas, Nevada, September 21–24, 1999.

    Google Scholar 

  • Wang, J., and Willeman, R. (1997), A Systematic Approach to Designing Detector Recipesfor Infrasonic Arrays, Center for Monitoring Research, Arlington, Virginia.

    Google Scholar 

  • Whitaker Rodney, W., Paul Mutschlecner, J., Masha B. Davidson, and Susan D. Noel (1990), InProceedings of the Fourth International Symposium on Long Range Sound Propagation, NASA Conference Publication 3101, compiled by William L. Willshire.

    Google Scholar 

  • Whitaker, R. W. (1995), Infrasonic Monitoring. In Proceedings of the 17th Annual Seismic Research Symposium, Scottsdale AZ, September 12, 1995, 996–1000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Brown, D.J., Katz, C.N., Bras, R.L., Flanagan, M.P., Wang, J., Gault, A.K. (2002). Infrasonic Signal Detection and Source Location at the Prototype International Data Centre. In: Der, Z.A., Shumway, R.H., Herrin, E.T. (eds) Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Data Processing and Infrasound. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8144-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8144-9_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6676-6

  • Online ISBN: 978-3-0348-8144-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics