Advertisement

The role of founder populations in mapping complex disease genes: Studies in the South Dakota Hutterites

  • Carole Ober
Chapter
  • 78 Downloads
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Founder populations are populations that are derived from a well-defined ancestral population with little admixture since their founding. Founder populations can be old and derived from a larger number of ancestors, such as the Finnish, Icelandic, Ashkenazi, and Sardinian populations, or young and derived from a much smaller number of founders, such as the Amish, Hutterites, and Tristan de Cunhans [1]. The latter group of founder populations is also inbred, i.e., the inbreeding coefficient is > 0 for nearly everyone in the population because all matings are consanguineous.

Keywords

Human Leukocyte Antigen Susceptibility Allele Founder Population Linkage Disequilibrium Mapping Outbred Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright AF, Carothers AD, Pirastu M (1999) Population choices in mapping for complex diseases. Nature Genet 23: 397–404PubMedCrossRefGoogle Scholar
  2. 2.
    Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265: 2037–2048PubMedCrossRefGoogle Scholar
  3. 3.
    Ober C, Cox NJ (1998) Mapping genes for complex traits in founder populations. Clin Exp Allergy (Supp) 28: 101–105PubMedCrossRefGoogle Scholar
  4. 4.
    Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet 22: 139–144PubMedCrossRefGoogle Scholar
  5. 5.
    Eaves IA, Merriman TR, Barber RA, Nutland S, Tuomilehto-Wolf E, Tuomilehto J, Cucca F, Todd JA (2000) The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nature Genet 25: 320–323PubMedCrossRefGoogle Scholar
  6. 6.
    Taillon-Miller P, Bauer-Sardiña I, Saccone NL, Putzel J, Laitinen T, Cao A, Kere J, Pilia G, Rice JP, Kwok P-Y (2000) Juxtaposed regions of extensive and minimal linkage dis-equilibrium in human Xq25 and Xq28. Nature Genet 25: 324–328PubMedCrossRefGoogle Scholar
  7. 7.
    McKusick VA (1978) Medical genetic studies of the Amish: selected papers. Johns Hopkins Univ Press, Baltimore, MDGoogle Scholar
  8. 8.
    Hostetler JA (1985) History and relevance of the Hutterite population for genetic studies. Am J Med Genet 22: 453–462PubMedCrossRefGoogle Scholar
  9. 9.
    Peltonen L, Jalanko A, Varilo T (1999) Molecular genetics of the Finnish disease heritage. Hum Mol Genet 8: 1913–1923PubMedCrossRefGoogle Scholar
  10. 10.
    Jarvik GP (1997) Genetic predictors of common disease: apolipoprotein E genotype as a paradigm. Ann Epidemiol 7: 357–362CrossRefGoogle Scholar
  11. 11.
    Lechler R (ed) (1994) HLA and disease. Academic Press, Inc, San Diego, CAGoogle Scholar
  12. 12.
    Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FF (1997) The mutation A1a677→Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. Thromb Haemost 77: 818–821PubMedGoogle Scholar
  13. 13.
    Horikawa Y, Oda N, Cox NJ, Li X, Hara M, Hinokio Y, Lindner TH, Mashima H, Horikawa Y, Oda Y et al (2000) Polymorphism in the calpain 10 gene affects susceptibility to type 2 diabetes in Mexican Americans. Nature Genet 26: 163–175PubMedCrossRefGoogle Scholar
  14. 14.
    Zietkiewicz E, Yotova V, Jarnik M, Korab-Laskowska M, Kidd KK, Modiano D, Scozzari R, Stoneking M, Tishkoff S, Batzer M et al (1998) Genetic structure of the ancestral population of modern humans. J Mol Evol 47: 146–155PubMedCrossRefGoogle Scholar
  15. 15.
    Ober C, Cox N, Parry R, Abney M, DiRienzo A, Changyaleket B, Gidley H, Kurtz B, Lander ES, Lee J et al (1998) Genome-wide search for asthma susceptibility loci in a founder population. Hum Molec Genet 7: 1393–1398PubMedCrossRefGoogle Scholar
  16. 16.
    Ober C, Tsalenko A, Parry R, Cox NJ (2000) A second generation genome-wide screen for asthma susceptibility alleles in a founder population. Am J Hum Genet 67: 1154–1162PubMedGoogle Scholar
  17. 17.
    Ober C, Leavitt SA, Tsalenko A, Howard TD, Hoki DM, Daniel R, Newman DL, Wu X. R. P, Lester LA et al (2000) Variation in the interleukin 4 receptor a gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am J Hum Genet 66: 517–526PubMedCrossRefGoogle Scholar
  18. 18.
    Donfack J, Tsalenko A, Hoki DM, Parry R, Solway J, Lester LA, Ober C (2000) HLADRB1“01 alleles and sensitization to cockroach allergies. JACI 105: 960–966Google Scholar
  19. 19.
    Summerhill E, Leavitt SA, Gidley H, Parry R, Solway J, Ober C (2000) 132-adrenergic receptor argl6-argl6 genotype is associated with reduced lung function, but not asthma, in the Hutterites. Am J Resp Crit Care Med 162: 599–602PubMedCrossRefGoogle Scholar
  20. 20.
    Martin AO (1970) The founder effect in a human isolate: Evolutionary implications. Am J Phys Anthropology 32: 351–368CrossRefGoogle Scholar
  21. 21.
    Steinberg AG, Bleibtreu HK, Kurczynski TW, Martin AO, Kurczynski EM (1967) Genetic studies in an inbred human isolate In: JF Crow, JV Neel (eds): Proceedings of the Third International Congress of Human Genetics. Johns Hopkins University Press, Baltimore, MD, 267–290Google Scholar
  22. 22.
    Abney MA, McPeek MS, Ober C (2000) Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet 66: 629–650PubMedCrossRefGoogle Scholar
  23. 23.
    Ober C, Weitkamp LR, Cox N, Dytch H, Kostyu D, Elias S (1997) HLA and mate choice in humans. Amer J Hum Genet 61: 497–504PubMedCrossRefGoogle Scholar
  24. 24.
    Hostetler JA (1974) Hutterite society. Johns Hopkins University Press, BaltimoreGoogle Scholar
  25. 25.
    CSGA (1997) A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nature Genet 15: 389–392Google Scholar
  26. 26.
    Lester LA, Ober C, Blumenthal M, Marsh DG, Rich SS, Miller ME, Banks-Schlegel S, Togias A, Bleecker ER, CSGA (2000) Ethnic specific differences in asthma and asthma-associated phenotypes in the collaborative study on the genetics of asthma (CSGA). JACI 108: 357–362Google Scholar
  27. 27.
    Ober C, Tsalenko A, Willadsen SA, Newman D, Daniel R, Wu X, Andal J, Hoki D, Schneider D, True K et al (1999) Genome-wide screen for atopy susceptibility alleles in the Hutterites. Clin Exp Allergy (Suppl) 4: 11–15Google Scholar
  28. 28.
    Hall D, Cho J, Hill A, Spedini G, Ober C, Di Rienzo A (1997) Comparison of linkage disequilibrium within and between ethnic groups. Amer J Hum Genet 61: A200CrossRefGoogle Scholar
  29. 29.
    Curtis D, Sham PC (1995) Model-free linkage analysis using likelihoods. Amer J Hum Genet 57: 703–716PubMedGoogle Scholar
  30. 30.
    Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin dependent diabetes mellitus (IDDM). Amer J Hum Genet 52: 506–516PubMedGoogle Scholar
  31. 31.
    Daniels SE, Bhattacharrya S, James A, Leaves NI, Young A, Hills M, Faux J, Ryan G, Le Souef P, Lathrop MG et al (1996) A genome-wide search for quantitative trait loci underlying asthma. Nature 383: 247–250PubMedCrossRefGoogle Scholar
  32. 32.
    Mathias RA, Freidhoff LR, Blumenthal MN, Meyers DA, Lester L, King R, Xu JF, Solway J, Barnes KC, Pierce J et al (2000) A genome-wide linkage analysis of total serum IgE using variance components analysis in asthmatic families. Genet Epidem 20: 340–355CrossRefGoogle Scholar
  33. 33.
    Wjst M, Fischer G, Immervoll T, Jung M, Saar K, Rueschendorf F, Reis A, Ulbrecht M, Gomolka M, Weiss EH et al (1999) A genome-wide search for linkage to asthma. Genomics 58: 1–8PubMedCrossRefGoogle Scholar
  34. 34.
    Wjst M (1999) Specific IgE — One gene fits all? Clin Exp Allergy (Suppl) 4: 5–10Google Scholar
  35. 35.
    Dizier MH, Besse-Schmittler C, Guilloid-Bataille M, Annesi-Maesano I, Boussaha M, Bousquet J, Charpin D, DeGioanni A, Gormand F, Grimfeld A et al (2000) Genome screen for asthma and related phenotypes in the french EGEA study. Am J Resp Crit Care Med 62: 1812–1818CrossRefGoogle Scholar
  36. 36.
    Ober C, Moffatt M (2000) Contributing factors to the pathobiology: The genetics of asthma. In: S Wenzel (ed): The pathobiology of asthma. W.B. Saunders Company, Philadelphia, PA, 245–261Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Carole Ober
    • 1
  1. 1.Department of Human GeneticsThe University of ChicagoChicagoUSA

Personalised recommendations