Skip to main content

Sterol-regulatory element binding proteins (SREBPs): gene-regulatory target of statin action

  • Chapter

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

Abstract

Several clinical studies have demonstrated over the last few years that efficient reduction of plasma cholesterol significantly reduces the incidence of clinical overt cardiovascular complications, like myocardial infarction or stroke, but has almost no effect on angiographically determined luminal diameter of coronary arteries. These, as well as many morphological and molecular studies, have led to a new paradigm of coronary heart disease, i.e., clinical prognosis is not mainly determined by the extent of a single stenosis, but by the number and biological nature of atherosclerotic plaques [ 17]. Considering biological and morphological features of atherosclerotic plaques, two types can be differentiated, stable and instable or vulnerable plaques. Vulnerable plaques are characterized by a large lipid-rich core with surrounding inflammation and a thin friable overlying fibrous cap susceptible to rupture or fissuring, thereby being a focus of high risk for thrombus formation. Rupture with consecutive thrombus formation can cause an acute coronary syndrome, such as unstable angina or myocardial infarction. So far reduction of plasma cholesterol by lipid-lowering therapy has been shown to reduce the lipid-rich core as well as inflammatory reactions, affect pro-coagulatory activity and increase extracellular matrix content and improve pardoxic vasocontriction by endothelial dysfunction. This might be due to efficient plasma cholesterol lowering and/or possible direct effects of statins on the vessel wall.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller-Wieland D, Kotzka J, Krone W (1997) Stabilization of atherosclerotic plaque during lipid lowering. Curr Opin Lipidol 8: 348–353

    Article  PubMed  Google Scholar 

  2. Rosenson RS, Tangney CC (1998) Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 279: 1643–1650

    Article  PubMed  CAS  Google Scholar 

  3. Ravn HB, Falk E (1999) Histopathology of plaque rupture. Cardiol Clin 17: 263–170

    Article  PubMed  CAS  Google Scholar 

  4. Rosenson RS (1999) Non-lipid-lowering effects of statins on atherosclerosis. Curr Cardiol Rep 1: 225–232

    Article  PubMed  CAS  Google Scholar 

  5. Adams MR, Kinlay S, Blasé GJ, Orford JL, Ganz P, Selwyn AP (2000) Pathophysiology of atherosclerosis: development, regression, restenosis. Curr Atheroscler Rep 2: 251–258

    Article  PubMed  CAS  Google Scholar 

  6. Farmer JA (2000) Pleiotropic effects of statins. Curr Atheroscler Rep 2: 208–217

    Article  PubMed  CAS  Google Scholar 

  7. Libby P (2000) Coronary artery injury and the biology of atherosclerosis: inflammation, thrombosis, and stabilization. Am J Cardiol 86 (8 Suppl 2): 3–8

    Article  Google Scholar 

  8. Laudes M, Kotzka J, Avci H, Rastalsky N, Krone W, Müller-Wieland D (2001) Effect of glucose on sterol regulatory element binding protein (SREBP)-1 in pancreatic beta cells. Diabetes 50 (Suppl. 2): A354

    Google Scholar 

  9. Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, Isles C, Lorimer AR, Macfarlane PW, McKillop JH et al (2001) Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 103: 357–462

    Article  PubMed  CAS  Google Scholar 

  10. Istvan ES, Planitkar M, Buchanan SK, Deisenhofer J (2000) Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J 19: 819–830

    Article  PubMed  CAS  Google Scholar 

  11. Hughes AD (1996) The role of isoprenoids in vascular smooth muscle: potential benefits of statins unrelated to cholesterol lowering. J Hum Hypertens 10: 387–390

    PubMed  CAS  Google Scholar 

  12. Edwards PA, Ericsson J (1999) Sterols and isoprenoids: Signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 68: 157–185

    Article  PubMed  CAS  Google Scholar 

  13. Auwerx J, Mangelsdorf D (2000) X-ceptors, nuclear receptors for metabolism. In: S Stemme, AG Olsson (eds): Atherosclerosis XII. Elsevier Science B. V., Amsterdam, 21–39

    Google Scholar 

  14. Fayard E, Schoonjans K, Auwerx J (2001) Xol INXS: role of the liver X and the farnesol X receptors. Curr Opin Lipidol 12: 113–120

    Article  PubMed  CAS  Google Scholar 

  15. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340

    Article  PubMed  CAS  Google Scholar 

  16. Briggs MR, Yokoyama C, Wang X, Brown MS, Goldstein JL (1993) Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J Biol Chem 268: 14490–14496

    PubMed  CAS  Google Scholar 

  17. Wang X, Briggs MR, Hua X, Yokoyama C, Goldstein JL, Brown MS (1993) Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem 268: 14497–14504

    PubMed  CAS  Google Scholar 

  18. Wang X, Sato R, Brown MS, Hua X, Goldstein JL (1994) SREBP-1 a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77: 53–62

    Article  PubMed  CAS  Google Scholar 

  19. Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X (1993) SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA 90: 11603–11607

    Article  PubMed  CAS  Google Scholar 

  20. Tontonoz P, Kim JB, Graves RA, Spiegelman BM (1993) ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 13: 4753–4759

    PubMed  CAS  Google Scholar 

  21. Sato R, Yang J, Wang X, Evans MJ, Ho YK, Goldstein JL, Brown MS (1994) Assignment of the membrane attachment, DNA binding, and transcriptional activation domains of sterol regulatory element-binding protein-1 (SREBP-1). J Biol Chem 269: 17267–17273

    PubMed  CAS  Google Scholar 

  22. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75: 187–197

    PubMed  CAS  Google Scholar 

  23. Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH (1995) Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBP1) and localization of SREBP1 and SREBP2 to chromosomes 7p11.2 and 22q13. Genomics 25: 667–673

    Article  PubMed  CAS  Google Scholar 

  24. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS (1997) Differential expression of exons la and lc in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99: 838–845

    Article  PubMed  CAS  Google Scholar 

  25. Miserez AR, Cao G, Probst LC, Hobbs HH (1997) Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBP2). Genomics 40: 31–40

    Article  PubMed  CAS  Google Scholar 

  26. Theopold U, Ekengren S, Hultmark D (1996) HLH106, a Drosophila transcription factor with similarity to the vertebrate sterol responsive element binding protein. Proc Natl Acad Sci USA 93: 1195–1199

    Article  PubMed  CAS  Google Scholar 

  27. Rosenfeld JM, Osborne TF (1998) HLH106, a Drosophila sterol regulatory element-binding protein in a natural cholesterol auxotroph. J Biol Chem 273: 16112–16121

    Article  PubMed  CAS  Google Scholar 

  28. Ma J, Ptashne M (1987) A new class of yeast transcriptional activators. Cell 51: 113–119

    Article  PubMed  CAS  Google Scholar 

  29. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform la in livers of transgenic mice and in cultured cells. J Clin Invest 99: 846–854

    Article  PubMed  CAS  Google Scholar 

  30. Littlewood TD, Evan GI (1995) Transcription factors 2: helix-loop-helix. Protein Profile 2: 621–702

    PubMed  CAS  Google Scholar 

  31. Morgenstern B, Atchley WR (1999) Evolution of bHLH transcription factors: modular evolution by domain shuffling? Mol Biol Evol 16: 1654–1663

    Article  PubMed  CAS  Google Scholar 

  32. Massari ME and Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20: 429–440

    Article  PubMed  CAS  Google Scholar 

  33. Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, Myo D, and myc proteins. Cell 56: 777–783

    Article  PubMed  CAS  Google Scholar 

  34. Voronova A, Baltimore D (1990) Mutations that disrupt DNA binding and dimer formation in the E47 helix-loop-helix protein map to distinct domains. Proc Natl Acad Sci USA 87: 4722–4726

    Article  PubMed  CAS  Google Scholar 

  35. Murre C, Baltimore D (1992) In: SL McKnight and Yamamoto (eds): Transcriptional Regulaton. K.R. Cold Spring Harbor Laboratory Press, Plainview, New York, 861–879

    Google Scholar 

  36. Deng CV, Dolde C, Gillison ML, Kato GJ (1992) Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc Natl Acad Sci USA 89: 599–602

    Article  Google Scholar 

  37. Swanson HI, Chan WK, Bradfield CA (1995) DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem 270: 26292–26302

    Article  PubMed  CAS  Google Scholar 

  38. Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Nati Acad Sci USA 94: 5172–5176

    Article  CAS  Google Scholar 

  39. Südhof TC, Russell DW, Goldstein JL, Brown MS, Sanchez-Pescador R, Bell GI (1985) Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science 228: 893–895

    Article  PubMed  Google Scholar 

  40. Südhof TC, Goldstein JL, Brown MS, Russell DW (1985) The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228: 815–822

    Article  PubMed  Google Scholar 

  41. Südhof TC, Russell DW, Brown MS, Goldstein JL (1987) 42 by element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell 48: 1061–1069

    Article  PubMed  Google Scholar 

  42. Südhof TC, van der Westhuyzen DR, Goldstein JL, Brown MS, Russell DW (1987) Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. J Biol Chem 262: 10773–10779

    PubMed  Google Scholar 

  43. Kim JB, Spotts GD, Halvorsen YD, Shih HM, Ellenberger T, Towle HC, Spiegelman BM (1995) Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell Biol 15: 2582–2588

    PubMed  CAS  Google Scholar 

  44. Parraga A, Bellsolell L, Ferré-D’Amaré AR, Burley SK (1998) Co-crystal structure of sterol regulatory element binding protein la at 2.3 Å resolution. Structure 6: 661–672

    Article  PubMed  CAS  Google Scholar 

  45. Ferré-D’Amare AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA trough a dimeric b/HLH/Z domain. Nature 363: 38–45

    Article  PubMed  Google Scholar 

  46. Magana MM, Osborne TF (1996) Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 271: 32689–32694

    Article  PubMed  CAS  Google Scholar 

  47. Magana MM, Lin SS, Dooley KA, Osborne TF (1997) Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res 38: 1630–1638

    PubMed  CAS  Google Scholar 

  48. Ericsson J, Jackson SM, Lee BC, Edwards PA (1996) Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl diphosphate synthase gene. Proc Natl Acad Sci USA 93: 945–950

    Article  CAS  Google Scholar 

  49. Ericsson J, Jackson SM, Kim JB, Spiegelman BM, Edwards PA (1997) Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene. J Biol Chem 272: 7298–7305

    Article  PubMed  CAS  Google Scholar 

  50. Guan G, Dai P, Shechter I (1998) Differential transcriptional regulation of the human squalene synthase gene by sterol regulatory element-binding proteins (SREBP) la and 2 and involvement of 5’ DNA sequence elements in the regulation. J Biol Chem 273: 12526–12535

    Article  PubMed  CAS  Google Scholar 

  51. Tabor DE, Kim JB, Spiegelman BM, Edwards PA (1998) Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J Biol Chem 273: 22052–22058

    Article  PubMed  CAS  Google Scholar 

  52. Bennett MK, Lopez JM, Sanchez HB, Osborne TF (1995) Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem 270: 25578–25583

    Article  PubMed  CAS  Google Scholar 

  53. Guan G, Jiang G, Koch RL, Shechter I (1995) Molecular cloning and functional analysis of the promoter of the human squalene synthase gene. J Biol Chem 270: 21958–21965

    Article  PubMed  CAS  Google Scholar 

  54. Sanchez HB, Yieh L, Osborne TF (1995) Cooperation by sterol regulatory element-binding protein and Spl in sterol regulation of low density lipoprotein receptor gene. J Biol Chem 270: 1161–1169

    Article  PubMed  CAS  Google Scholar 

  55. Yieh L, Sanchez HB, Osborne TF (1995) Domains of transcription factor Spl required for synergistic activation with sterol regulatory element binding protein 1 of low density lipoprotein receptor promoter. Proc Natl Acad Sci USA 92: 6102–6106

    Article  PubMed  CAS  Google Scholar 

  56. Ericsson J, Jackson SM, Edwards PA (1996) Synergistic binding of sterol regulatory element-binding protein and NF-Y to the farnesyl diphosphate synthase promoter is critical for sterol-regulated expression of the gene. J Biol Chem 271: 24359–24364

    Article  PubMed  CAS  Google Scholar 

  57. Jackson SM, Ericsson J, Metherall JE, Edwards PA (1996) Role for sterol regulatory element binding protein in the regulation of farnesyl diphosphate synthase and in the control of cellular levels of cholesterol and triglyceride: evidence from sterol regulation-defective cells. J Lipid Res 37: 1712–1721

    PubMed  CAS  Google Scholar 

  58. Lopez JM, Bennett MK, Sanchez HB, Rosenfeld JM, Osborne TE (1996) Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci USA 93: 1049–1053

    Article  PubMed  CAS  Google Scholar 

  59. Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M (1996) Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 271: 26461–26464

    Article  PubMed  CAS  Google Scholar 

  60. Athanikar JN, Sanchez HB, Osborne TF (1997) Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Spl: a critical role for the Btd domain of Spl. Mot Cell Biol 17: 5193–5200

    CAS  Google Scholar 

  61. Dooley KA, Millinder S, Osborne TF (1998) Sterol regulation of 3-hydroxy-3-methylglutarylcoenzyme A synthase gene through a direct interaction between sterol regulatory element binding protein and the trimeric CCAAT-binding factor/nuclear factor Y. J Biol Chem 273: 1349–1356

    Article  CAS  Google Scholar 

  62. Inoue J, Sato R, Maeda M (1998) Multiple DNA elements for sterol regulatory element-binding protein and NF-Y are responsible for sterol-regulated transcription of the genes for human 3-hydroxy-3-methylglutaryl coenzyme A synthase and squalene synthase. J Biochem 123: 1191–1198

    Article  PubMed  CAS  Google Scholar 

  63. Naar AM, Beaurang PA, Robinson KM, Oliner JD, Avizonis D, Scheek S, Zwicker J, Kadonaga JT, Tjian R (1998) Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Spl and SREBP-la in vitro. Genes Dev 12: 3020–3031

    Article  PubMed  CAS  Google Scholar 

  64. Natarajan R, Ghosh S, Grogan WM (1998) Molecular cloning of the promoter for rat hepatic neutral cholesterol ester hydrolase: evidence for transcriptional regulation by sterols. Biochem Biophys Res Commun 243: 349–355

    Article  PubMed  CAS  Google Scholar 

  65. Swinnen JV, Alen P, Heyns W, Verhoeven G (1998) Identification of diazepam-binding inhibitor/acyl-coA-binding protein as a sterol regulatory element-binding protein-responsive gene. J Biol Chem 273: 19938–19944

    Article  PubMed  CAS  Google Scholar 

  66. Bennett MK, Ngo TT, Athanikar JN, Rosenfeld JM, Osborne TF (1999) Co-stimulation of promoter for low density lipoprotein receptor gene by sterol regulatory element-binding protein and Spl is specifically disrupted by the yin yang 1 protein. J Biol Chem 274: 13025–13032

    Article  PubMed  CAS  Google Scholar 

  67. Ericsson J, Usheva A, Edwards PA (1999) YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J Biol Chem 274: 14508–14513

    Article  PubMed  CAS  Google Scholar 

  68. Gauthier B, Robb M, Gaudet F, Ginsburg GS, McPherson R (1999) Characterization of a choles-terol response element (CRE) in the promoter of the cholesteryl ester transfer protein gene: functional role of the transcription factors SREBP-la, -2, and YY1. J Lipid Res 40: 1284–1293

    PubMed  CAS  Google Scholar 

  69. Natarajan R, Ghosh S, Grogan WM (1999) Regulation of the rat neutral cytosolic cholesteryl ester hydrolase promoter by hormones and sterols: a role for nuclear factor-Y in the sterol-mediated response. J Lipid Res 40: 2091–2098

    PubMed  CAS  Google Scholar 

  70. Bennett MK and Osborne TF (2000) Nutrient regulation of gene expression by the sterol regulatory element binding proteins: increased recruitment of gene-specific coregulatory factors and selective hyperacetylation of histone H3 in vivo. Proc Nall Acad Sci USA 97: 6340–6344

    Article  CAS  Google Scholar 

  71. Xiong S, Chirala SS, Wakil SJ (2000) Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp- 1-binding sites. Proc Nall Acad Sci USA 97: 3948–3953

    Article  CAS  Google Scholar 

  72. Kim JH, Lee JN, Paik YK (2001) Cholesterol biosynthesis from lanosterol. a concerted role for sp 1 and nf-y-binding sites for sterol-mediated regulation of rat 7-dehydrocholesterol reductase gene expression. J Biol Chem 276: 18153–18160

    Article  PubMed  CAS  Google Scholar 

  73. Shea-Eaton W, Lopez D, McLean MP (2001) Yin yang 1 protein negatively regulates high-density lipoprotein receptor gene transcription by disrupting binding of sterol regulatory element binding protein to the sterol regulatory element. Endocrinology 142: 49–58

    Article  PubMed  CAS  Google Scholar 

  74. Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (1996) SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev 10: 2903–2911

    Article  PubMed  CAS  Google Scholar 

  75. Ericsson J, Edwards PA (1998) CBP is required for sterol-regulated and sterol regulatory element-binding protein-regulated transcription. J Biol Chem 273: 17865–17870

    Article  PubMed  CAS  Google Scholar 

  76. Naar AM, Beaurang PA, Zhou S, Abraham S, Solomon W, Tjian R (1999) Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398: 828–832

    Article  PubMed  CAS  Google Scholar 

  77. Hua X, Sakai J, Ho YK, Goldstein JL, Brown MS (1995) Hairpin orientation of sterol regulatory element-binding protein-2 in cell membranes as determined by protease protection. J Biol Chem 270: 29422–29427

    Article  PubMed  CAS  Google Scholar 

  78. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96: 11041–11048

    Article  PubMed  CAS  Google Scholar 

  79. Sakai J, Nohturfft A, Goldstein JL, Brown MS (1998) Cleavage of sterol regulatory element-binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage-activating protein. Evidence from in vivo competition studies. J Biol Chem 273: 5785–5793

    Article  PubMed  CAS  Google Scholar 

  80. Duncan EA, Brown MS, Goldstein JL, Sakai J (1997) Cleavage site for sterol-regulated protease localized to a Leu-Ser bond in the lumenal loop of sterol regulatory element-binding protein-2. J Biol Chem 272: 12778–12785

    Article  PubMed  CAS  Google Scholar 

  81. Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL (1996) Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a trans-membrane segment. Cell 85: 1037–1046

    Article  PubMed  CAS  Google Scholar 

  82. Rawson RB, Zelenski NG, Nijhawan D, Ye J, Sakai J, Hasan MT, Chang TY, Brown MS, Goldstein JL (1997) Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1: 47–57

    Article  PubMed  CAS  Google Scholar 

  83. Duncan EA, Dave UP, Sakai J, Goldstein JL, Brown MS (1998) Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J Biol Chem 273: 17801–17809

    Article  PubMed  CAS  Google Scholar 

  84. Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–398

    Article  PubMed  CAS  Google Scholar 

  85. Hua X, Nohturfft A, Goldstein JL, Brown MS (1996) Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87: 415–426

    Article  PubMed  CAS  Google Scholar 

  86. Hua X, Sakai J, Brown MS, Goldstein JL (1996) Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J Biol Chem 271: 10379–10384

    Article  PubMed  CAS  Google Scholar 

  87. Rawson RB, DeBose-Boyd R, Goldstein JL, Brown MS (1999) Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem 274: 28549–28556

    Article  PubMed  CAS  Google Scholar 

  88. Nohturfft A, Brown MS, Goldstein JL (1998) Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. J Biol Chem 273: 17243–17250

    Article  PubMed  CAS  Google Scholar 

  89. Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL (1997) Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 272: 20213–20221

    Article  PubMed  CAS  Google Scholar 

  90. Nohturfft A, Hua X, Brown MS, Goldstein JL (1996) Recurrent G-to-A substitution in a single codon of SREBP cleavage-activating protein causes sterol resistance in three mutant Chinese hamster ovary cell lines. Proc Natl Acad Sci USA 93: 13709–13714

    Article  PubMed  CAS  Google Scholar 

  91. Nohturfft A, Brown MS, Goldstein JL (1998) Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc Natl Acad Sci USA 95: 12848–12853

    Article  PubMed  CAS  Google Scholar 

  92. Gil G, Faust JR, Chin DJ, Goldstein JL, Brown MS (1985) Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41: 249–258

    Article  PubMed  CAS  Google Scholar 

  93. Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA et al (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277: 232–235

    Article  PubMed  CAS  Google Scholar 

  94. Nakajima A, Ohnishi S, Mimura T, Kubo K, Suzuki A, Yazaki Y, Matsuhashi N (2000) Protein-losing enteropathy associated with hypocomplementemia and anti-nuclear antibodies. J Gastroenterol 35: 627–630

    Article  PubMed  CAS  Google Scholar 

  95. Kumagai H, Chun KT, Simoni RD (1995) Molecular dissection of the role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 270: 19107–19113

    Article  PubMed  CAS  Google Scholar 

  96. DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ (1999) Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99: 703–712

    Article  Google Scholar 

  97. Espenshade PJ, Cheng D, Goldstein JL, Brown MS (1999) Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 274: 22795–22804

    Article  PubMed  CAS  Google Scholar 

  98. Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS (1999) Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci USA 96: 1 1235–1 1240

    Google Scholar 

  99. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102: 315–323

    Article  PubMed  CAS  Google Scholar 

  100. Wang X, Pai JT, Wiedenfeld EA, Medina JC, Slaughter CA, Goldstein JL, Brown MS (1995) Purification of an interleulcin-1 13 converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J Biol Chem 270: 18044–18050

    Article  PubMed  CAS  Google Scholar 

  101. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED- is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809

    Article  PubMed  CAS  Google Scholar 

  102. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43

    Article  PubMed  CAS  Google Scholar 

  103. Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL (1996) Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J 15: 1012–1020

    PubMed  CAS  Google Scholar 

  104. Pai JT, Brown MS, Goldstein JL (1996) Purification and cDNA cloning of a second apoptosisrelated cysteine protease that cleaves and activates sterol regulatory element binding proteins. Proc Natl Acad Sci USA 93: 5437–5442

    Article  PubMed  CAS  Google Scholar 

  105. Nagoshi E, Imamoto N, Sato R, Yoneda Y (1999) Nuclear import of sterol regulatory element-binding protein-a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 10: 2221–2233

    PubMed  CAS  Google Scholar 

  106. Nagoshi E, Yoneda Y (2001) Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin beta. Mol Cell Biol 21: 2779–2789

    Article  PubMed  CAS  Google Scholar 

  107. Osborne TF, Gil G, Goldstein JL, Brown MS (1988) Operator constitutive mutation of 3-hydroxy-3-metylglutaryl-coenzyme A reductase promotor abolishes protein binding to sterol regulatory element. J Biol Chem 263: 3380–3387

    PubMed  CAS  Google Scholar 

  108. Smith JR, Osborne TF, Brown MS, Goldstein JL, Gil G (1988) Multiple sterol regulatory elements in promotor for hamster 3-hydroxy-3-metylglutaryl-coenzyme A synthases. J Biol Chem 263: 18480–18487

    PubMed  CAS  Google Scholar 

  109. Osborne TF (1991) Single nucleotide resolution of sterol regulatory region in promoter for 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 266: 13947–13951

    PubMed  CAS  Google Scholar 

  110. Sato R, Takano T (1995) Regulation of intracellular cholesterol metabolism. Cell Struct Funct 20: 421–427

    Article  PubMed  CAS  Google Scholar 

  111. Yang J, Sato R, Goldstein JL, Brown MS (1994) Sterol-resistant transcription in CHO cells caused by gene rearrangement that truncates SREBP-2. Genes Dev 8: 1910–1919

    Article  PubMed  CAS  Google Scholar 

  112. Kawabe Y, Sato R, Matsumoto A, Honda M, Wada Y, Yazaki Y, Endo A, Takano T, Itakura H, Kodama T (1996) Regulation of fatty acid synthase expression by cholesterol in human cultured cells. Biochem Biophys Res Commun 219: 515–520

    Article  PubMed  CAS  Google Scholar 

  113. Vallett SM, Sanchez HB, Rosenfeld JM, Osborne TF (1996) A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. J Biol Chem 271: 12247–12253

    Article  PubMed  CAS  Google Scholar 

  114. Bist A, Fielding PE, Fielding CJ (1997) Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein-free cholesterol. Proc Natl Acad Sci USA 94: 10693–10698

    Article  PubMed  CAS  Google Scholar 

  115. Swinnen JV, Ulrix W, Heyns W, Verhoeven G (1997) Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc Natl Acad Sci USA 94: 1297 5–129 80

    Article  CAS  Google Scholar 

  116. Sztrolovics R, Wang SP, Lapierre P, Chen HS, Robert MF, Mitchell GA (1997) Hormone-sensitive lipase (Lipe): sequence analysis of the 129Sv mouse Lipe gene. Mamm Genome 8: 86–89

    Article  PubMed  CAS  Google Scholar 

  117. Bruce C, Chouinard RA, Tall AR (1998) Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport. Annu Rev Nutr 18: 297–330

    Article  PubMed  CAS  Google Scholar 

  118. Chouinard RA Jr, Luo Y, Osborne TF, Walsh A, Tall AR (1998) Sterol regulatory element binding protein-1 activates the cholesteryl ester transfer protein Gene in vivo but is not required for sterol up-regulation of gene expression. J Biol Chem 273: 22409–22414

    Article  PubMed  CAS  Google Scholar 

  119. Guan G, Dai PH, Osborne TF, Kim JB, Shechter I (1997) Multiple sequence elements are involved in the transcriptional regulation of the human squalene synthase gene. J Biol Chem 272: 10295–10302

    Article  PubMed  CAS  Google Scholar 

  120. Kan HY, Pissios P, Chambaz J, Zannis VI (1999) DNA binding specificity and transactivation properties of SREBP-2 bound to multiple sites on the human apoA-II promoter. Nucleic Acids Res 27: 1104–1117

    Article  PubMed  CAS  Google Scholar 

  121. Pissios P, Kan HY, Nagaoka S, Zannis VI (1999) SREBP-1 binds to multiple sites and transactivates the human ApoA-II promoter in vitro: SREBP-1 mutants defective in DNA binding or transcriptional activation repress ApoA-II promoter activity. Arterioscler Thromb Vasc Biol 19: 1456–1469

    Article  PubMed  CAS  Google Scholar 

  122. Lopez D, McLean MP (1999) Sterol regulatory element-binding protein-la binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology 140: 5669–5681

    Article  PubMed  CAS  Google Scholar 

  123. Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, Le Liepvre X, Berthelier-Lubrano C, Spiegelman BM, Kim JB, Ferre P et al (1999) ADDUSREBP-Ic is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 19: 3760–3768

    PubMed  CAS  Google Scholar 

  124. Foretz M, Guichard C, Ferre P, Foufelle F (1999) Sterol regulatory element binding protein-lc is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Nail Acad Sci USA 96: 12737–12742

    Article  CAS  Google Scholar 

  125. Fra AM, Pasqualetto E, Mancini M, Sitia R (2000) Genomic organization and transcriptional analysis of the human genes coding for caveolin-1 and caveolin-2. Gene 243: 75–83

    Article  PubMed  CAS  Google Scholar 

  126. Incardona JP and Eaton S (2000) Cholesterol in signal transduction. Curr Opin Cell Biol 12: 193–203

    Article  PubMed  CAS  Google Scholar 

  127. Mater MK, Thelen AP, Pan DA, Jump DB (1999) Sterol response element-binding protein lc (SREBPIc) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription. J Biol Chem 274: 32725–32732

    Article  PubMed  CAS  Google Scholar 

  128. Bist A, Fielding CJ, Fielding PE (2000) p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism. Biochemistry 39: 1966–1972

    Article  PubMed  CAS  Google Scholar 

  129. Moon YA, Lee JJ, Park SW, Ahn YH, Kim KS (2000) The roles of sterol regulatory element-binding proteins in the transactivation of the rat ATP citrate-lyase promoter. J Biol Chem 275: 30280–30286

    Article  PubMed  CAS  Google Scholar 

  130. Sato R, Okamoto A, Inoue J, Miyamoto W, Sakai Y, Emoto N, Shimano H, Maeda M (2000) Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins. J Biol Chem 275: 12497–12502

    Article  PubMed  CAS  Google Scholar 

  131. Schoonjans K, Gelman L, Haby C, Briggs M, Auwerx J (2000) Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. J Mol Biol 304: 323–334

    Article  PubMed  CAS  Google Scholar 

  132. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G (2000) Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 19: 5173–5181

    Article  PubMed  CAS  Google Scholar 

  133. Frank PG, Galbiati F, Volonte D, Razani B, Cohen DE, Marcel YL, Lisanti MP (2001) Influence of caveolin-I on cellular cholesterol efflux mediated by high-density lipoproteins. Am J Physiol Cell 280: C1204–1214

    CAS  Google Scholar 

  134. Lopez JM, Hegardt FG, Ham D (2001) Differential expression of cytosolic and mitochondrial 3-hydroxy-3-methylglutaryl CoA synthases during adipocyte differentiation. Mol Cell Biochem 217: 57–66

    Article  PubMed  CAS  Google Scholar 

  135. Shea-Eaton WK, Trinidad MJ, Lopez D, Nackley A, McLean MP (2001) Sterol regulatory element binding protein-la regulation of the steroidogenic acute regulatory protein gene. Endocrinology 142: 1525–1533

    Article  PubMed  CAS  Google Scholar 

  136. Zannis VI, Kan HY, Kritis A, Zanni E, Kardassis D (2001) Transcriptional regulation of the human apolipoprotein genes. Front Biosci 6: D456–504

    Article  PubMed  CAS  Google Scholar 

  137. Rodriguez C, Martinez-Gonzalez J, Sanchez-Gomez S, Badimon L (2001) LDL downregulates CYP51 in porcine vascular endothelial cells and in the arterial wall through a sterol regulatory element binding protein-2-dependent mechanism. Circ Res 88: 268–274

    Article  PubMed  CAS  Google Scholar 

  138. Gondret F, Ferre P, Dugail I (2001) ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J Lipid Res 42: 106–113

    PubMed  CAS  Google Scholar 

  139. Christenson LK, Osborne TF, McAllister JM, Strauss JF 3rd (2001) Conditional response of the human steroidogenic acute regulatory protein gene promoter to sterol regulatory element binding protein-la. Endocrinology 142: 28–36

    Article  PubMed  CAS  Google Scholar 

  140. Wang X, Sperkova Z, Napoli JL (2001) Analysis of mouse retinal dehydrogenase type 2 promoter and expression. Genomics 74: 245–250

    Article  PubMed  CAS  Google Scholar 

  141. Athanikar JN, Osborne TF (1998) Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein. Proc Natl Acad Sci USA 95: 4935–4940

    Article  PubMed  CAS  Google Scholar 

  142. Osborne TF (2000) Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem 275: 32379–32382

    Article  PubMed  CAS  Google Scholar 

  143. Sheng Z, Otani H, Brown MS, Goldstein JL (1995) Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci USA 92: 935–938

    Article  PubMed  CAS  Google Scholar 

  144. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-la. J Clin Invest 98: 1575–1584

    Article  PubMed  CAS  Google Scholar 

  145. Horton JD, Bashmakov Y, Shimomura I, Shimano H (1998) Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci USA 95: 5987–5992

    Article  PubMed  CAS  Google Scholar 

  146. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of trans-genic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101: 2331–2339

    Article  PubMed  CAS  Google Scholar 

  147. Pai JT, Guryev O, Brown MS, Goldstein JL (1998) Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 273: 26138–26148

    Article  PubMed  CAS  Google Scholar 

  148. Horton JD, Shimano H, Hamilton RL, Brown MS, Goldstein JL (1999) Disruption of LDL receptor gene in transgenic SREBP- 1 a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J Clin Invest 103: 1067–1076

    Article  PubMed  CAS  Google Scholar 

  149. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, Brown MS (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-lc in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12: 3182–3194

    Article  PubMed  CAS  Google Scholar 

  150. Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, Horton JD (1997) Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 100: 2115–2124

    Article  PubMed  CAS  Google Scholar 

  151. Kim JB, Spiegelman BM (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10: 1096–1107

    Article  PubMed  CAS  Google Scholar 

  152. Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM (1998) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADDI/SREBP1. J Clin Invest 101: 1–9

    Article  PubMed  CAS  Google Scholar 

  153. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14: 1293–1307

    PubMed  CAS  Google Scholar 

  154. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR72, a lipid-activated transcription factor. Cell 79: 1147–1156

    Article  PubMed  CAS  Google Scholar 

  155. Brun RP, Kim JB, Hu E, Altlok S, Spiegelman BM (1996) Adipocyte differentiation: A transcriptional regulatory cascade. Curr Opin Cell Biol 8: 862–832

    Article  Google Scholar 

  156. Brun RP, Kim JB, Hu E, Spiegelman BM (1997) Peroxisome proliferator-activated receptor y and the control of adipogenesis. Curr Opin Lipidol 8: 212–218

    Article  PubMed  CAS  Google Scholar 

  157. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507–514

    Article  PubMed  CAS  Google Scholar 

  158. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20: 649–688

    Article  PubMed  CAS  Google Scholar 

  159. Kim JB, Wright HM, Wright M, Spiegelman BM (1998) ADD1/SREBP1 activates PPARy through the production of endogenous ligand. Proc Natl Acad Sci USA 95: 4333–4337

    Article  PubMed  CAS  Google Scholar 

  160. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401: 73–76

    Article  PubMed  CAS  Google Scholar 

  161. Lawrence RD (1946) Lipodystrophy and hepatomegaly with diabetes, lipaemia and other metabolic distrurbances. A case throwing new light on the action of insulin. Lancet 1: 724–731

    Article  PubMed  Google Scholar 

  162. Seip M, Trygstad 0 (1996) Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl 413: 2–28

    Article  PubMed  CAS  Google Scholar 

  163. Matsuda M, Korn BS, Hammer RE, Moon Y-A, Komuro R, Horton JD, Goldstein JL, Brown MS, Shimomura I (2001) SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev 15: 1206–1216

    Article  PubMed  CAS  Google Scholar 

  164. Streicher R, Kotzka J, MiiIler-Wieland D, Siemeister G, Munck M, Avci H, Krone W (1996) SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J Biol Chem 271: 7128–7133

    Article  PubMed  CAS  Google Scholar 

  165. Shimomura I, Bashmakov Y, Shimano H, Horton JD, Goldstein JL (1997) Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc Nati Acad Sci USA 98: 12354–12359

    Article  Google Scholar 

  166. DeBose-Boyd RA, Ou J, Goldstein JL, Brown MS (2001) Espression of sterol regulatory element-binding protein lc (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR hagands. Proc Nati Acad Sci USA 98: 1477–1482

    Article  Google Scholar 

  167. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ (2000) Regulation of mouse sterol regulatory element-binding protein-lc gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14: 2819–2830

    Article  PubMed  CAS  Google Scholar 

  168. Yoshikawa T, Shimano H., Amemiya-Kudo M, Yahagi N, Hasty AH, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K et al (2001) Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein-lc gene promoter. Mol Cell Biol 21: 2991–3000

    Article  PubMed  CAS  Google Scholar 

  169. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA (2001) Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-lc (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Nati Acad Sci USA 98: 6027–6032

    Article  CAS  Google Scholar 

  170. Plutzky J (2000) Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigms. Curr Ather Rep 2: 327–335

    Article  CAS  Google Scholar 

  171. Torra IP, Chinette G, Duval C, Furchart J-C, Staels B (2001) Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12: 245–254

    Article  PubMed  CAS  Google Scholar 

  172. Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart J-C, Nauib-Fruchart J, Glineur C, Staels B (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARa and induces HDL apoA-I. J Clin Invest 107: 1423–1432

    Article  PubMed  CAS  Google Scholar 

  173. Dobbins RL, Szczepaniak LS, Bentley B, Esser V, Myhill J, McGarry JD (2001) Prolonged inhibition of muscle carnitine palmitoyltransferase- I promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 50: 123–130

    Article  PubMed  CAS  Google Scholar 

  174. Unger RH, Zhou YT (2001) Lipotoxicity of (3-cells in obesity and in other causes of fatty acid spillover. Diabetes 50 (Suppl. 1): S118–S121

    Article  PubMed  CAS  Google Scholar 

  175. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, Schick F, Claussen CD et al (1999) Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48: 1113–1119

    Article  PubMed  CAS  Google Scholar 

  176. Unger RH, Orci L (2001) Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 15: 312–321

    Article  PubMed  CAS  Google Scholar 

  177. Kakuma T, Lee Y, Higa M, Wang ZW, Pan W, Shimomura I, Unger RH (2000) Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc Natl Acad Sci USA 97: 8536–8541

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Kotzka, J., Krone, W., Müller-Wieland, D. (2002). Sterol-regulatory element binding proteins (SREBPs): gene-regulatory target of statin action. In: Schmitz, G., Torzewski, M. (eds) HMG-CoA Reductase Inhibitors. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8135-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8135-7_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9451-7

  • Online ISBN: 978-3-0348-8135-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics