Skip to main content

Hyaluronics and aggrecanics

  • Conference paper
  • 284 Accesses

Abstract

Hyaluronan (HA) is a high molecular weight (105-107Da) unbranched glycosaminoglycan, composed of repeating disaccharides of D-N-Acetylglucosamine and D-Glucuronic acid. It is a widely distributed component of the extracellular matrix of vertebrate tissues [1]. It also acts as a scaffold for the binding of selected matrix molecules including aggrecan and other members of the hyalectan family [2, 3]. HA forms viscoelastic solutions and there is much interest and speculation on the properties that contribute to its pronounced non-Newtonian behaviour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balazs EA, Gibbs DA (1970) The rheological properties and the biological function of hyaluronic acid. In: EA Balazs (ed):Chemistry and molecular biology of the intercellular matrix.Academic Press, London, New York, 1241–1254

    Google Scholar 

  2. Laurent TC (1995) Structure of the extracellular matrix and the biology of hyaluronan. In: RK Reed, NG McHale, JL Bert, CP Winlove, GA Laine (eds): Intersitium connective tissue and lymphatics. Portland Press, London, 1–12

    Google Scholar 

  3. Lapcik L Jr, Lapcik L, De Smedt S, Demeest, J, Chabrecek P (1998) HA: preparation, structure, properties and applications. Chemical Rev 98: 2663–2684

    Article  CAS  Google Scholar 

  4. Morris ER, Rees DA, Welsh EJ (1980) Conformation and dynamic interactions in HA solutions. J Mol Biol 138: 383–400

    Article  PubMed  CAS  Google Scholar 

  5. Wik KO, Comper WD (1982) Hyaluronate diffusion in semi-dilute solutions. Biopoly-mers 21: 583–599

    Article  CAS  Google Scholar 

  6. Sheehan JK, Arundel C, Phelps CF (1983) Effect of the cations sodium, potassium and calcium on the interactions of hyaluronate chains: a light scattering and viscometric study. Int J Biol Macromol 5: 222–228

    Article  CAS  Google Scholar 

  7. Reed CE, Li X, Reed WF (1989) The hydrodynamic scaling model for polymer self-dif-fusion. Biopolymers 28: 1981–2000

    Article  PubMed  CAS  Google Scholar 

  8. Almond A, Sheehan JK, Brass A (1997) Molecular dynamics simulations of the disac-charides of hyaluronan in solution. Glycobiology 7: 597–604

    Article  PubMed  CAS  Google Scholar 

  9. Hardingham TE, Gribbon P, Heng, BC (1999) New approaches to the investigation ofhyaluronan networks. Biochem Soc Trans 27: 124–127

    PubMed  CAS  Google Scholar 

  10. Gribbon P, Heng B C, Hardingham TE (1999) The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching. Biophys J 77: 2210–2216

    Article  PubMed  CAS  Google Scholar 

  11. Gribbon P, Heng BC, Hardingham TE (2000) The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem J 350: 329–335

    Article  PubMed  CAS  Google Scholar 

  12. Engel J (1989) Figurel and Discussion comment. The biology of hyaluronan. Ciba Foundation Symposium 143: 18–19

    Google Scholar 

  13. Scott JE, Cummings C, Brass A, Chen Y (1991) Secondary and tertiary structures of HA in aqueous solution, investigation by rotary shadowing electron microscopy and computer simulation. Biochem J 274: 699–705

    PubMed  CAS  Google Scholar 

  14. Scott JE, Heatley F (1999) Hyaluronan forms specific stable tertiary structures in aqueous solution: A C-13 NMR study. Proc Natl Acad Sci USA 96: 4850–4855

    Article  PubMed  CAS  Google Scholar 

  15. Glabe CG, Harty PK, Rosen SD (1983) Preparation and properties of fluorescent polysaccharides. Anal Biochem 130: 287–294

    Article  PubMed  CAS  Google Scholar 

  16. Kubitscheck H, Wedekind P, Peters R (1994) Lateral diffusion measurements at high spatial resolution by scanning microphotolysis in a confocal microscope. Biophys J 67: 946–965

    Article  Google Scholar 

  17. Gribbon P, Hardingham TE (1998) Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys J 75: 1032–1039

    Article  PubMed  CAS  Google Scholar 

  18. Hardingham TE, Gribbon P (2000) Confocal-FRAP analysis of ECM molecular interactions. In: C Strueli, M Grant (eds): Methods in molecular biology Vol 139, Extracellular matrix protocols. Humana Press, Totowa, NJ, 83–93

    Google Scholar 

  19. Callaghan PT, Pinder DN (1984) Influence of multiple length scales on the behaviour of polymer self-diffusion in the semidilute region. Macromolecules 17: 431–437

    Article  CAS  Google Scholar 

  20. Phillies DJ (1989) The hydrodynamic scaling model for polymer self-diffusion. J Phys Chem 93: 5029–5039

    Article  CAS  Google Scholar 

  21. Imhoff A, Van Blaadren A, Maret G, Mallema J, Dhont JKG (1994) A comparison between the long time self diffusion of and low shear viscosity of concentrated dispersions of charged colloidal silica spheres. J Chem Phys 100: 2170–2181

    Article  Google Scholar 

  22. Almond A, Brass A, Sheehan JK (1998) Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccharides: predictions from simulations of hyaluronan tetrasaccharides compared with hydrodynamic and X-ray fibre diffraction data. J Mol Biol 284: 1425–1437

    Article  PubMed  CAS  Google Scholar 

  23. Almond A, Brass A, Sheehan JK (1998) Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data. Glycobiology 8: 973–980

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh S, Khobal I, Zanette D, Reed WF (1993) Conformational contraction and hydrolysis of hyaluronate in sodium hydroxide solutions. Macromol 26: 4684–4691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Hardingham, T. (2002). Hyaluronics and aggrecanics. In: Hascall, V.C., Kuettner, K.E. (eds) The Many Faces of Osteoarthritis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8133-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8133-3_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9450-0

  • Online ISBN: 978-3-0348-8133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics