Skip to main content

Animal models of toxic and metabolic sensory neuropathies

  • Chapter
Mechanisms and Mediators of Neuropathic Pain

Part of the book series: Progress in Inflammation Research ((PIR))

  • 148 Accesses

Abstract

Peripheral neuropathies, excluding those caused by mechanical damage, are most commonly associated with infection, autoimmune disorders, and exposure to neurotoxins or metabolic disease. The sensory nervous system may be selectively damaged, as occurs in platinum toxicity, or there may be a more generalized sensorimotor neuropathy. Symptoms of sensory dysfunction range from sensory loss to inappropriate or exaggerated pain perception and a variety of sensory disorders may occur together or in chronological sequence. For example, while sensory loss is the predominant symptom of diabetic polyneuropathy, 5-10% of patients exhibit a painful neuropathy that may either precede or co-exist with sensory loss. Pain, paresthesias or dysesthesias are a common feature of many peripheral neuropathies but are difficult to quantify in animal models. It is particularly unfortunate that both leprosy and HIV have proven extremely difficult to model in animals that lend themselves to experimental studies of nociceptive processing. As a result, little is yet known of the mechanisms that produce these most prevalent of neuropathies. In recent years, sensory dysfunction has been described in animal models of chemical neurotoxicity and diabetes mellitus. Such models are of value as they allow investigation of the etiology of neuropathic pain and because they provide test systems in which to study potential therapeutic agents that may prevent or ameliorate neuropathic pain. In this chapter we will briefly consider the animal models of toxic neuropathies, which largely produce sensory loss, and then focus upon data obtained from the widely studied animal models of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mizisin AP, Powell HC (1995) Toxic neuropathies. Curr Opin Neurol 8: 367–371

    PubMed  CAS  Google Scholar 

  2. Graham DG (1999) Neurotoxicants and the cytoskeleton. Curr Opin Neurol 12: 733–737

    PubMed  CAS  Google Scholar 

  3. Edwards PM, Sporel-Ozakat RE, Gispen WH (1991) Peripheral pain fiber function is relatively insensitive to the neurotoxic actions of acrylamide in the rat. Toxicol Appl Pharmacol 11: 43–48

    Google Scholar 

  4. Miller MS, Spencer PS (1984) Single doses of acrylamide reduce retrograde transport velocity. J Neurochem 43: 1401–1408

    PubMed  CAS  Google Scholar 

  5. Prineas J (1969) The pathogenesis of dying-back polyneuropathies. II. An ultrastructural study of experimental acrylamide intoxication in the cat. J Neuropath Exp Neurol 28: 598–621

    PubMed  CAS  Google Scholar 

  6. Whitaker-Azmitia PM, Raio M, Raio D, Borella A (1995) A 5-HT3 receptor antagonist fails to prevent cisplatin-induced toxicity in immature rat spinal cord. Eur J Pharmacol 275: 139–143

    CAS  Google Scholar 

  7. Cavaletti G, Fabbrica D, Minoia C, Frattola L, Tredici G (1998) Carboplatin toxic effects on the peripheral nervous system of the rat. Ann Onc 9: 443–447

    CAS  Google Scholar 

  8. Tredici G, Braga M, Nicolini G, Miloso M, Marmiroli P, Schenone A, Nobbio L, Frattola L, Cavaletti G (1999) Effect of recombinant human nerve growth factor on cisplatin neurotoxicity in rats. Exp Neurol 159: 551–558

    PubMed  CAS  Google Scholar 

  9. McLeod JG, Penny R (1969) Vincristine neuropathy: an electrophysiological and histological study. J Neurol, Neurosurg Psych 32: 297–304

    CAS  Google Scholar 

  10. Aley KO, Reichling DB, Levine JD (1996) Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans. Neurosci 73: 259–265

    CAS  Google Scholar 

  11. Authier N, Coudore F, Eschalier A, Fialip J (1999) Pain related behaviour during vincristine-induced neuropathy in rats. Neuroreport 10: 965–968

    PubMed  CAS  Google Scholar 

  12. Di Gregorio F, Favaro G, Panozzo C, Fiori MG (1990) Efficacy of ganglioside treatment in reducing functional alterations induced by vincristine in rabbit peripheral nerves. Cancer Chemother Pharmacol 26: 31–36

    PubMed  Google Scholar 

  13. Contreras PC, Vaught JL, Gruner JA, Brosnan C, Steffler C, Arezzo JC, Lewis ME, Kessler JA, Apfel SC (1997) Insulin-like growth factor-I prevents development of a vincristine neuropathy in mice. Brain Res 774: 20–26

    PubMed  CAS  Google Scholar 

  14. Nozaki-Taguchi, N, Chaplan SR, Higuera ES, Ajakwe AC, Yaksh TL (2001) Vincristineinduced allodynia in the rat. Pain 93: 69–76

    PubMed  CAS  Google Scholar 

  15. Tanner KD, Reichling DB, Levine JD (1998) Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat. J Neurosci 18: 6480–6491

    PubMed  CAS  Google Scholar 

  16. Topp KS, Tanner KD, Levine JD (2000) Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol 424: 563–576

    PubMed  CAS  Google Scholar 

  17. Tanner KD, Levine JD, Topp KS (1998) Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol 395: 481–492

    PubMed  CAS  Google Scholar 

  18. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci USA 78: 5608–5612

    PubMed  Google Scholar 

  19. Lipton RB, Apfel SC, Dutcher JP, Rosenberg R, Kaplan J, Berger A, Einzig AI, Wiernik P, Schaumburg HH (1989) Taxol produces a predominantly sensory neuropathy. Neu-rol 39: 368–373

    CAS  Google Scholar 

  20. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Sem Oncol 20: 1–15

    CAS  Google Scholar 

  21. Hamers FP, Pette C, Neijt JP, Gispen WH (1993) The ACTH-(4–9) analog, ORG 2766, prevents taxol-induced neuropathy in rats. Eur J Pharmacol 233: 177–178

    PubMed  CAS  Google Scholar 

  22. Cavaletti G, Tredici G, Braga M, Tazzari S (1995) Experimental peripheral neuropathy induced in adult rats by repeated intraperitoneal administration of taxol. Exp Neurol 133: 64–72

    PubMed  CAS  Google Scholar 

  23. Campana WM, Eskeland N, Calcutt NA, Misasi R, Myers RR, O’Brien JS (1998) Prosaptide prevents paclitaxel neurotoxicity. Neurotoxicol 19: 237–244

    CAS  Google Scholar 

  24. Cliffer KD, Siuciak JA, Carson SR, Radley HE, Park JS, Lewis DR, Zlotchenko E, Nguyen T, Garcia K, Tonra JR et al (1998) Physiological characterization of Taxolinduced large-fiber sensory neuropathy in the rat. Ann Neurol 43: 46–55

    PubMed  CAS  Google Scholar 

  25. Handgretinger R, Baader P, Dopfer R, Klingebiel T, Reuland P, Treuner J, Reisfeld RA, Niethammer D (1992) A phase I study of neuroblastoma with the anti-ganglioside GD2 antibody 14.G2a. Cancer Immunol Immunother 35: 199–204

    PubMed  CAS  Google Scholar 

  26. Start R, Yu AL, Yaksh TL, Sorkin LS (1997) An animal model of pain produced by systemic administration of an immunotherapeutic anti-ganglioside antibody. Pain 69: 119–125

    Google Scholar 

  27. Xiao WH, Yu AL, Sorkin LS (1997) Electrophysiological characteristics of primary afferent fibers after systemic administration of anti-GD2 ganglioside antibody. Pain 69: 145–151

    PubMed  CAS  Google Scholar 

  28. Gillin S, Sorkin LS (1998) Gabapentin reverses the allodynia produced by the administration of anti-GD2 ganglioside, an immunotherapeutic drug. Anesth Analgesia 86: 111–116

    CAS  Google Scholar 

  29. Svennerholm L, Bostrom K, Fredman P, Jungbjer B, Lekman A, Mansson JE, Rynmark BM. (1994) Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim Biophys Acta 1214: 115–123

    PubMed  CAS  Google Scholar 

  30. Yuki N, Yamada M, Tagawa Y, Takahashi H, Handa S (1997) Pathogenesis of the neurotoxicity caused by anti-GD2 antibody therapy. J Neurol Sci 149: 127–130

    PubMed  CAS  Google Scholar 

  31. Mujoo K, Kipps TJ, Yang HM, Cheresh DA, Wargalla U, Sander DJ, Reisfeld RA (1989) Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal antiganglioside GD2 antibody 14.18. Cancer Res 49: 2857–2861

    PubMed  CAS  Google Scholar 

  32. Saleh MN, Khazaeli MB, Wheeler RH, Dropcho E, Liu T, Urist M, Miller DM, Lawson S, Dixon P, Russell CH et al (1992) Phase I trial of the murine monoclonal anti-GD2 antibody 14G2a in metastatic melanoma. Cancer Res 52: 4342–4347

    PubMed  CAS  Google Scholar 

  33. Fullerton PM, Kremer M (1961) Neuropathy after intake of thalidomide (Distaval). Brit Med J 2: 855–858

    PubMed  CAS  Google Scholar 

  34. Schwab BW, Arezzo JC, Paldino AM, Flohe L, Matthiessen T, Spencer PS (1984) Rabbit sural nerve responses to chronic treatment with thalidomide and supidimide. Muscle Nerve 7: 362–368

    PubMed  CAS  Google Scholar 

  35. Schroder JM, Matthiesen T (1985) Experimental thalidomide neuropathy: the morphological correlate of reduced conduction velocity. Acta Neuropathol 65: 285–292

    PubMed  CAS  Google Scholar 

  36. Sommer C, Marziniak M, Myers RR (1998) The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve. Pain 74: 83–91

    PubMed  CAS  Google Scholar 

  37. Wagner R, Myers RR (1996) Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 7: 2897–2901

    PubMed  CAS  Google Scholar 

  38. Sorkin LS, Xiao WH, Wagner R, Myers RR (1997) Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neurosci 81: 255–262

    CAS  Google Scholar 

  39. Kagan BL, Baldwin RL, Munoz D, Wisnieski BJ (1992) Formation of ion-permeable channels by tumor necrosis factor-alpha. Science 255: 1427–1430

    PubMed  CAS  Google Scholar 

  40. Windebank AJ (1993) Polyneuropathy due to nutritional deficiency and alcoholism. In: PJ Dyck, PK Thomas (eds): Peripheral neuropathy. WB Saunders, Philadelphia, 1310–1321

    Google Scholar 

  41. Kampov-Polevoy AB, Kasheffskaya OP, Overstreet DH, Rezvani AH, Viglinskaya IV, Badistov BA, Seredenin SB, Halikas JA, Sinclair JD (1996) Pain sensitivity and saccharin intake in alcohol-preferring and nonpreferring rat strains. Physiol Behav 59: 683–688

    PubMed  CAS  Google Scholar 

  42. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D, Brown MJ (1983) Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. New Engl J Med 309: 445–448

    PubMed  CAS  Google Scholar 

  43. Xu Y, Sladky JT, Brown MJ (1989) Dose-dependent expression of neuronopathy after experimental pyridoxine intoxication. Neurol 39: 1077–1083

    CAS  Google Scholar 

  44. Helgren ME, Cliffer KD, Torrento K, Cavnor C, Curtis R, DiStefano PS, Wiegand SJ, Lindsay RM. (1997) Neurotrophin-3 administration attenuates deficits of pyridoxine-induced large-fiber sensory neuropathy. J Neurosci 17: 372–382

    PubMed  CAS  Google Scholar 

  45. Pirart J (1978) Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care 1: 168–188

    Google Scholar 

  46. Thomas PK, Tomlinson DR (1993) Diabetic and hypoglycemic neuropathy. In: PJ Dyck, PK Thomas (eds): Peripheral neuropathy. WB Saunders, Philadelphia, 1219–1250

    Google Scholar 

  47. Ahroni JH, Boyko EJ, Davignon DR, Pecoraro RE (1994) The health and functional status of veterans with diabetes. Diabetes Care 17: 318–321

    PubMed  CAS  Google Scholar 

  48. Benbow SJ, Chan AW, Bowsher D, MacFarlane IA, Williams G (1994) A prospective study of painful symptoms, small-fibre function and peripheral vascular disease in chronic painful diabetic neuropathy. Diabetic Med 11: 17–21

    PubMed  CAS  Google Scholar 

  49. Jordan WR (1936) Neuritic manifestations in diabetes mellitus. Arch Int Med 57: 307–311

    Google Scholar 

  50. Archer AG, Roberts VC, Watkins PJ (1984) Blood flow patterns in painful diabetic neuropathy. Diabetologia 27: 563–571

    PubMed  CAS  Google Scholar 

  51. Boulton AJ, Drury J, Clarke B, Ward JD (1982) Continuous subcutaneous insulin infu-sion in the management of painful diabetic neuropathy. Diabetes Care 5: 386–390

    PubMed  CAS  Google Scholar 

  52. Morley GK, Mooradian AD, Levine AL, Morley JE (1984) Mechanisms of pain in diabetic peripheral neuropathy: effects of glucose on pain in humans. Am J Med 77: 79–86

    PubMed  CAS  Google Scholar 

  53. Chan AW, MacFarland IA, Bowsher DR, Wells JCD (1990) Does acute hyperglycaemia influence heat pain threshold? J Neurosurg 57: 688–690

    Google Scholar 

  54. Rerup CC (1970) Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev 22: 485–518

    PubMed  CAS  Google Scholar 

  55. Wang Z, Gleichmann H (1998) GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47: 50–56

    PubMed  CAS  Google Scholar 

  56. Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferre P, Penicaud L (1994) Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res 638: 221–226

    PubMed  CAS  Google Scholar 

  57. Gabbay KH (1973) Role of sorbitol pathway in neuropathy. Adv Metab Disord 2: 417–432

    PubMed  CAS  Google Scholar 

  58. Forcier NJ, Mizisin AP, Rimmer MA, Powell HC (1991) Cellular pathology of the nerve microenvironment in galactose intoxication. J Neuropathol Exp Neurol 50: 235–255

    PubMed  CAS  Google Scholar 

  59. Mizisin AP, Powell HC (1993)Schwann cell injury is attenuated by aldose reductase inhibition in galactose intoxication. J Neuropathol Exp Neurol 52: 78–86

    PubMed  CAS  Google Scholar 

  60. Mizisin AP, Bache M, DiStefano PS, Acheson A, Lindsay RM, Calcutt NA (1997) BDNF attenuates functional and structural disorders in nerves of galactose-fed rats. J Neuropathol Exp Neurol 56: 1290–1301

    PubMed  CAS  Google Scholar 

  61. Sharma AK, Thomas PK (1974) Peripheral nerve structure and function in experimental diabetes. J Neurol Sci 23: 1–15

    PubMed  CAS  Google Scholar 

  62. Willars GB, Calcutt NA, Compton AM, Tomlinson DR, Keen P (1989) Substance P levels in peripheral nerve, skin, atrial myocardium and gastrointestinal tract of rats with long-term diabetes mellitus. Effects of aldose reductase inhibition. J Neurol Sci 91: 153–164

    PubMed  CAS  Google Scholar 

  63. Jakobsen J (1976) Axonal dwindling in early experimental diabetes. I. A study of cross-sectioned nerves. Diabetologia 12: 539–546

    PubMed  CAS  Google Scholar 

  64. Nukada H, Dyck PJ, Low PA, Lais AC, Sparks MF (1986) Axonal caliber and neurofilaments are proportionately decreased in galactose neuropathy. J Neuropathol Exp Neu-rol 45: 140–150

    CAS  Google Scholar 

  65. Sidenius P, Jakobsen J (1980) Reduced perikaryal volume of lower motor and primary sensory neurons in early experimental diabetes. Diabetes 29: 182–186

    PubMed  CAS  Google Scholar 

  66. Tamura E, Parry GJ (1994) Severe radicular pathology in rats with longstanding diabetes. J Neurol Sci 127: 29–35

    PubMed  CAS  Google Scholar 

  67. Thomas PK, Wright DW, Tzebelikos E (1984) Amino acid uptake by dorsal root ganglia from streptozotocin-diabetic rats. J Neurol Neurosurg Psych 47: 912–916

    CAS  Google Scholar 

  68. Medori R, Autilio-Gambetti L, Monaco S, Gambetti P (1985) Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci USA 82: 7716–7720

    PubMed  CAS  Google Scholar 

  69. McLean WG, Chapman JE, Cullum NA (1987) Impaired induction of ornithine decarboxylase activity following nerve crush in the streptozotocin-diabetic rat. Diabetologia 30: 963–965

    PubMed  CAS  Google Scholar 

  70. Calcutt NA, Mizisin AP, Yaksh TL (1993) Impaired induction of vasoactive intestinal polypeptide after sciatic nerve injury in the streptozotocin-diabetic rat. J Neurol Sci 119: 154–161

    PubMed  CAS  Google Scholar 

  71. Ekstrom AR; Tomlinson DR (1989) Impaired nerve regeneration in streptozotocin-diabetic rats. Effects of treatment with an aldose reductase inhibitor. J Neurol Sci 93: 231–237

    PubMed  CAS  Google Scholar 

  72. Levine AS, Morley JE, Wilcox G, Brown DM, Handwerger BS (1982) Tail pinch behavior and analgesia in diabetic mice. Physiol Behav 28: 39–43

    PubMed  CAS  Google Scholar 

  73. Kamei J, Ohhashi Y, Aoki T, Kasuya Y (1991) Streptozotocin-induced diabetes in mice reduces the nociceptive threshold, as recognized after application of noxious mechanical stimuli but not of thermal stimuli. Pharmacol Biochem Behav 39: 541–544

    PubMed  CAS  Google Scholar 

  74. Kamei J, Kawashima N, Kasuya Y (1992) Role of spleen or spleen products in the deficiency in morphine-induced analgesia in diabetic mice. Brain Res 576: 139–142

    PubMed  CAS  Google Scholar 

  75. Kamei J, Kawashima N, Kasuya Y (1992) Naloxone-induced analgesia in diabetic mice. Eur J Pharmacol 210: 339–341

    PubMed  CAS  Google Scholar 

  76. Kamei J, Kawashima N, Kasuya Y (1993) Serum glucose level-dependent and independent modulation of mu-opioid agonist-mediated analgesia in diabetic mice. Life Sci 52: 53–60

    PubMed  CAS  Google Scholar 

  77. Kamei J, Kawashima N, Narita M, Suzuki T, Misawa M, Kasuya Y (1994) Reduction in ATP-sensitive potassium channel-mediated antinociception in diabetic mice. Psychopharmacol 113: 318–321

    CAS  Google Scholar 

  78. Lee JH, McCarty R (1990) Glycemic control of pain threshold in diabetic and control rats. Physiol Behav 47: 225–230

    PubMed  CAS  Google Scholar 

  79. Lee JH, McCarty R (1992) Pain threshold in diabetic rats: effects of good versus poor diabetic control. Pain 50: 231–236

    Google Scholar 

  80. Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53: 81–88

    PubMed  CAS  Google Scholar 

  81. Courteix C, Bourget P, Caussade F, Bardin M, Coudore F, Fialip J, Eschalier A (1998) Is the reduced efficacy of morphine in diabetic rats caused by alterations of opiate receptors or of morphine pharmacokinetics? J Pharmacol Exp Ther 285: 63–67

    CAS  Google Scholar 

  82. Apfel SC, Arezzo JC, Brownlee M, Federoff H, Kessler JA (1994) Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res 634: 7–12

    PubMed  CAS  Google Scholar 

  83. Chu PC, Lin MT, Shian LR, Leu SY (1986) Alterations in physiologic functions and in brain monoamine content in streptozocin-diabetic rats. Diabetes 35: 481–485

    PubMed  CAS  Google Scholar 

  84. Akunne HC, Soliman KF (1987) The role of opioid receptors in diabetes and hyperglycemia-induced changes in pain threshold in the rat. Psychopharmacol 93: 167–172

    CAS  Google Scholar 

  85. Calcutt NA, Malmberg AB, Yamamoto T, Yaksh TL (1994) Tolrestat treatment prevents modification of the formalin test model of prolonged pain in hyperglycemic rats. Pain 58: 413–420

    PubMed  CAS  Google Scholar 

  86. Calcutt NA, Dines KC, Cesena RM (1998) Effects of the peptide HP228 on nerve disorders in diabetic rats. Metabolism 47: 650–656

    PubMed  CAS  Google Scholar 

  87. Calcutt NA, Campana WM, Eskeland NL, Mohiuddin L, Dines KC, Mizisin AP, O’Brien JS (1999) Prosaposin gene expression and the efficacy of a prosaposin-derived peptide in preventing structural and functional disorders of peripheral nerve in diabetic rats. J Neuropathol Exp Neurol 58: 628–636

    PubMed  CAS  Google Scholar 

  88. Calcutt NA, Stiller C, Gustafsson H, Malmberg AB (2000) Elevated substance-P-like immunoreactivity levels in spinal dialysates during the formalin test in normal and diabetic rats. Brain Res 856: 20–27

    PubMed  CAS  Google Scholar 

  89. Calcutt NA, Freshwater JD, O’Brien JS (2000) Protection of sensory function and anti-hyperalgesic properties of a prosaposin-derived peptide in diabetic rats. Anesthesiol 93: 1271–1278

    CAS  Google Scholar 

  90. Fox A, Eastwood C, Gentry C, Manning D, Urban L (1999) Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81: 307–316

    PubMed  CAS  Google Scholar 

  91. Forman LJ, Estilow S, Lewis M, Vasilenko P (1986) Streptozocin diabetes alters immunoreactive beta-endorphin levels and pain perception after 8 wk in female rats. Diabetes 35: 1309–1313

    PubMed  CAS  Google Scholar 

  92. Kolta MG, Ngong JM, Rutledge LP, Pierzchala K, Van Loon GR (1996) Endogenous opioid peptide mediation of hypoalgesic response in long-term diabetic rats. Neuropeptides 30: 335–344

    PubMed  CAS  Google Scholar 

  93. Wuarin-Bierman L, Zahnd GR, Kaufmann F, Burcklen L, Adler J (1987) Hyperalgesia in spontaneous and experimental models of diabetic neuropathy. Diabetologia 30: 653–658

    PubMed  CAS  Google Scholar 

  94. Ahlgren SC, Levine JD (1993) Mechanical hyperalgesia in streptozotocin-diabetic rats. Neurosci 52: 1049–1055

    CAS  Google Scholar 

  95. Ahlgren SC, Levine JD (1994) Protein kinase C inhibitors decrease hyperalgesia and C-fiber hyperexcitability in the streptozotocin-diabetic rat. J Neurophysiol 72: 684–692

    PubMed  CAS  Google Scholar 

  96. Courteix C, Lavarenne J, Eschalier A (1993) RP-67580, a specific tachykinin NK1 receptor antagonist, relieves chronic hyperalgesia in diabetic rats. Eur J Pharmacol 241: 267–270

    PubMed  CAS  Google Scholar 

  97. Courteix C, Bardin M, Massol J, Fialip J, Lavarenne J, Eschalier A (1996) Daily insulin treatment relieves long-term hyperalgesia in streptozocin-diabetic rats. Neuroreport 7: 1922–1924

    PubMed  CAS  Google Scholar 

  98. Coudore-Civiale MA, Courteix C, Eschalier A, Fialip J (1998) Effect of tachykinin receptor antagonists in experimental neuropathic pain. Eur J Pharmacol 361: 175–184

    PubMed  CAS  Google Scholar 

  99. Klamt JG (1998) Effects of intrathecally administered lamotrigine, a glutamate release inhibitor, on short-and long-term models of hyperalgesia in rats. Anesthesiol 88: 487–494

    CAS  Google Scholar 

  100. Malcangio M, Tomlinson DR (1998) A pharmacologic analysis of mechanical hyperalgesia in streptozotocin-diabetic rats. Pain 76: 151–157

    PubMed  CAS  Google Scholar 

  101. Kamei J, Aoki T, Kasuya Y (1992) Periaqueductal gray matter stimulation-produced analgesia in diabetic rats. Neurosci Lett 142: 13–16

    PubMed  CAS  Google Scholar 

  102. Kamei J; Saitoh A; Kasuya Y (1995) Involvement of delta 1-opioid receptors in the antinociceptive effects of mexiletine in mice. Neurosci Lett 196: 169–172

    PubMed  CAS  Google Scholar 

  103. Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR (1996) Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain 68: 293–299

    PubMed  CAS  Google Scholar 

  104. Field MJ, McCleary S, Hughes J, Singh L (1999) Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 80: 391–398

    PubMed  CAS  Google Scholar 

  105. Calcutt, NA, Chaplan, SR (1997) Spinal pharmacology of tactile allodynia in diabetic rats. Brit J Pharmacol 122: 1478–1482

    CAS  Google Scholar 

  106. Field MJ, McCleary S, Boden P, Suman-Chauhan N, Hughes J, Singh L (1998) Involvement of the central tachykinin NK1 receptor during maintenance of mechanical hypersensitivity induced by diabetes in the rat. J Pharmacol Exp Ther 285: 1226–1232

    PubMed  CAS  Google Scholar 

  107. Lynch JJ, Jarvis MF, Kowaluk EA (1999) An adenosine kinase inhibitor attenuates tactile allodynia in a rat model of diabetic neuropathic pain. Eur J Pharmacol 364: 141–146

    PubMed  CAS  Google Scholar 

  108. Jarvis MF, Wessale JL, Zhu CZ, Lynch JJ, Dayton BD, Calzadilla SV, Padley RJ, Opgenorth TJ, Kowaluk EA (2000) ABT-627, an endothelin ET(A) receptor-selective antagonist, attenuates tactile allodynia in a diabetic rat model of neuropathic pain. Eur J Pharmacol 388: 29–35

    PubMed  CAS  Google Scholar 

  109. Lee YH, Ryu TG, Park SJ, Yang EJ, Jeon BH, Hur GM, Kim KJ (2000) Alphal-adrenoceptors involvement in painful diabetic neuropathy: a role in allodynia. Neuroreport 11: 1417–1420

    PubMed  CAS  Google Scholar 

  110. Kamei J, Hitosugi H, Kasuya Y (1993) Formalin-induced nociceptive responses in diabetic mice. Neurosci Lett 149: 161–164

    PubMed  CAS  Google Scholar 

  111. Takeshita N, Ohkubo Y, Yamaguchi I (1995) Tiapride attenuates pain transmission through an indirect activation of central serotonergic mechanism. J Pharmacol Exp Ther 275: 23–30

    PubMed  CAS  Google Scholar 

  112. Takeshita N, Yamaguchi I (1997) Insulin attenuates formalin-induced nociceptive response in mice through a mechanism that is deranged by diabetes mellitus. J Pharmacol Exp Ther 281: 315–321

    PubMed  CAS  Google Scholar 

  113. Takeshita N, Yamaguchi I (1998) Antinociceptive effects of morphine were different between experimental and genetic diabetes. Pharmacol Biochem Behav 60: 889–897

    PubMed  CAS  Google Scholar 

  114. Kamei J, Kashiwazaki T, Hitosugi H, Nagase H (1997) The role of spinal deltal-opioid receptors in inhibiting the formalin-induced nociceptive response in diabetic mice. Eur J Pharmacol 326: 31–36

    PubMed  CAS  Google Scholar 

  115. Malmberg AB, Yaksh TL, Calcutt NA (1993) Anti-nociceptive effects of the GM1 ganglioside derivative AGF 44 on the formalin test in normal and streptozotocin-diabetic rats. Neurosci Lett 161: 45–48

    PubMed  CAS  Google Scholar 

  116. Calcutt NA, Li L, Yaksh TL, Malmberg AB (1995) Different effects of two aldose reductase inhibitors on nociception and prostaglandin E. Eur J Pharmacol 285: 189–197

    CAS  Google Scholar 

  117. Tomlinson DR, Stevens EJ, Diemel LT (1994) Aldose reductase inhibitors and their potential for the treatment of diabetic complications. TiPS 15: 293–297

    PubMed  CAS  Google Scholar 

  118. Ahlgren SC, White DM, Levine JD (1992) Increased responsiveness of sensory neurons in the saphenous nerve of the streptozotocin-diabetic rat. J Neurophysiol 68: 2077–2085

    PubMed  CAS  Google Scholar 

  119. Russell LC, Burchiel KJ (1993) Abnormal activity in diabetic rat saphenous nerve. Diabetes 42: 814–819

    PubMed  CAS  Google Scholar 

  120. Ward JD, Barnes CG, Fisher DJ, Jessop JD, Baker RW (1971) Improvement in nerve conduction following treatment in newly diagnosed diabetics. Lancet 1: 428–430

    PubMed  CAS  Google Scholar 

  121. Greene DA, De Jesus PV Jr, Winegrad AI (1975) Effects of insulin and dietary myoinos-itol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55: 1326–1336

    PubMed  CAS  Google Scholar 

  122. Tomlinson DR, Holmes PR, Mayer JH (1982) Reversal, by treatment with an aldose reductase inhibitor, of impaired axonal transport and motor nerve conduction velocity in experimental diabetes mellitus. Neurosci Lett 31: 189–193

    PubMed  CAS  Google Scholar 

  123. Moore SA, Peterson RG, Felten DL, O’Connor BL (1980) A quantitative comparison of motor and sensory conduction velocities in short-and long-term streptozotocin-and alloxan-diabetic rats. J Neurol Sci 48: 133–152

    PubMed  CAS  Google Scholar 

  124. Julu PO (1988) The correlation between sensory nerve conduction velocities and three metabolic indices in rats treated with streptozotocin. Diabetologia 31: 247–253

    PubMed  CAS  Google Scholar 

  125. Ahlgren SC, Wang JF, Levine JD (1997) C-fiber mechanical stimulus-response functions are different in inflammatory versus neuropathic hyperalgesia in the rat. Neurosci 76: 285–290

    CAS  Google Scholar 

  126. Jakobsen J, Brimijoin S, Skau K, Sidenius P, Wells D (1981) Retrograde axonal transport of transmitter enzymes, fucose-labeled protein, and nerve growth factor in streptozotocin-diabetic rats. Diabetes 30: 797–803

    PubMed  CAS  Google Scholar 

  127. Rodriguez-Pena A, Botana M, Gonzalez M, Requejo F (1995) Expression of neurotrophins and their receptors in sciatic nerve of experimentally diabetic rats. Neurosci Lett 200: 37–40

    PubMed  CAS  Google Scholar 

  128. Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR (1995) Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem 64: 1231–1237

    PubMed  CAS  Google Scholar 

  129. Fernyhough P, Diemel LT, Tomlinson DR (1998) Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozotocin-diabetic rats. Diabetologia 41: 300–306

    PubMed  CAS  Google Scholar 

  130. Delcroix JD, Tomlinson DR, Fernyhough P (1997) Diabetes and axotomy-induced deficits in retrograde axonal transport of nerve growth factor correlate with decreased levels of p75LNTR protein in lumbar dorsal root ganglia. Brain Res Mol Brain Res 51: 82–90

    PubMed  CAS  Google Scholar 

  131. Lindsay RM, Harmar AJ (1989) Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 337: 362–364

    PubMed  CAS  Google Scholar 

  132. Robinson JP, Willars GB, Tomlinson DR, Keen P (1987) Axonal transport and tissue contents of substance P in rats with long-term streptozotocin-diabetes. Effects of the aldose reductase inhibitor “statil”. Brain Res 426: 339–348

    PubMed  CAS  Google Scholar 

  133. Diemel LT, Brewster WJ, Fernyhough P, Tomlinson DR (1992) Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor. Brain Res Mol Brain Res 21: 171–175

    Google Scholar 

  134. Hylden JL, Wilcox GL (1981) Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res 217: 212–215

    PubMed  CAS  Google Scholar 

  135. Yashpal K, Henry JL (1984) Substance p analogue blocks sp-induced facilitation of a spinal nociceptive reflex. Brain Res Bull 13: 597–600

    PubMed  CAS  Google Scholar 

  136. Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257: 1276–1279

    PubMed  CAS  Google Scholar 

  137. Garrett NE, Malcangio M, Dewhurst M, Tomlinson DR (1997) alpha-Lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. Neurosci Lett 222: 191–194

    PubMed  CAS  Google Scholar 

  138. Calcutt NA, Chen P, Hua XY (1998) Effects of diabetes on tissue content and evoked release of calcitonin gene-related peptide-like immunoreactivity from rat sensory nerves. Neurosci Lett 254: 129–132

    PubMed  CAS  Google Scholar 

  139. Okuse K, Chaplan SR, McMahon SB, Luo ZD, Calcutt NA, Scott BP, Akopian AN, Wood JN (1997) Regulation of expression of the sensory neuron-specific sodium channel SNS in inflammatory and neuropathic pain. Mol Cell Neurosci 10: 196–207

    PubMed  CAS  Google Scholar 

  140. Lee YH, Ryu TG, Park SJ, Yang EJ, Jeon BH, Hur GM, Kim KJ (2000) Alphal-adrenoceptors involvement in painful diabetic neuropathy: a role in allodynia. Neuroreport 11: 1417–1420

    PubMed  CAS  Google Scholar 

  141. Luo ZD, Chaplan SR, Scott BP, Cizkova D, Calcutt NA, Yaksh TL (1999) Neuronal nitric oxide synthase mRNA upregulation in rat sensory neurons after spinal nerve ligation: lack of a role in allodynia development. J Neurosci 19: 9201–9208

    CAS  Google Scholar 

  142. Zochodne DW, Verge VM, Cheng C, Hoke A, Jolley C, Thomsen K, Rubin I, Lauritzen M (2000) Nitric oxide synthase activity and expression in experimental diabetic neuropathy. J Neuropath Exp Neurol 59: 798–807

    PubMed  CAS  Google Scholar 

  143. Di Giulio AM, Tenconi B, La Croix R, Mantegazza P, Abbracchio MP, Cattabeni F, Gorio A (1989) Denervation and hyperinnervation in the nervous system of diabetic animals. II. Monoaminergic and peptidergic alterations in the diabetic encephalopathy. J Neurosci Res 24: 362–368

    PubMed  Google Scholar 

  144. Calcutt NA, Malmberg AB (1995) Basal and formalin-evoked spinal levels of amino acids in conscious diabetic rats. Soc Neurosci Abs 21: 650

    Google Scholar 

  145. Kamei J, Ogawa M, Kasuya Y (1990) Development of supersensitivity to substance P in the spinal cord of the streptozotocin-induced diabetic rats. Pharmacol Biochem Behav 35: 473–475

    PubMed  CAS  Google Scholar 

  146. Li N, Young MM, Bailey CJ, Smith ME (1999) NMDA and AMPA glutamate receptor subtypes in the thoracic spinal cord in lean and obese-diabetic ob/ob mice. Brain Res 849: 34–44

    PubMed  CAS  Google Scholar 

  147. Suh HW, Song DK, Wie MB, Jung JS, Hong HE, Choi SR, Kim YH (1996) The reduction of antinociceptive effect of morphine administered intraventricularly is correlated with the decrease of serotonin release from the spinal cord in streptozotocin-induced diabetic rats. Gen Pharmacol 27: 445–450

    PubMed  CAS  Google Scholar 

  148. Bitar MS, Bajic KT, Farook T, Thomas MI, Pilcher CW (1999) Spinal cord noradrenergic dynamics in diabetic and hypercortisolaemic states. Brain Res 830: 1–9

    PubMed  CAS  Google Scholar 

  149. Pertovaara A, Wei H, Kalmari J, Ruotsalainen M (2001) Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 167: 425–434

    PubMed  CAS  Google Scholar 

  150. Simon GS, Dewey WL (1981) Narcotics and diabetes. I. The effects of streptozotocininduced diabetes on the antinociceptive potency of morphine. J Pharmacol Exp Ther 218: 318–323

    PubMed  CAS  Google Scholar 

  151. Raz I, Hasdai D, Seltzer Z, Melmed RN (1988) Effect of hyperglycemia on pain perception and on efficacy of morphine analgesia in rats. Diabetes 37: 1253–1259

    PubMed  CAS  Google Scholar 

  152. Courteix C, Bardin M, Chantelauze C, Lavarenne J, Eschalier A (1994) Study of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics. Pain 57: 153–160

    PubMed  CAS  Google Scholar 

  153. Courteix C, Bourget P, Caussade F, Bardin M, Coudore F, Fialip J, Eschalier A (1998) Is the reduced efficacy of morphine in diabetic rats caused by alterations of opiate receptors or of morphine pharmacokinetics? J Pharmacol Exp Ther 285: 63–70

    PubMed  CAS  Google Scholar 

  154. Kamei J, Hitosugi H, Kawashima N, Aoki T, Ohhashi Y, Kasuya Y (1992) Antinociceptive effect of mexiletine in diabetic mice. Res Commun Chem Pathol Pharmacol 77: 245–248

    PubMed  CAS  Google Scholar 

  155. Bardin L, Schmidt J, Alloui A, Eschalier A (2000) Effect of intrathecal administration of serotonin in chronic pain models in rats. Eur J Pharmacol 409: 37–43

    PubMed  CAS  Google Scholar 

  156. Begon S, Pickering G, Eschalier A, Dubray C (2000) Magnesium and MK801 have a similar effect in two experimental models of neuropathic pain. Brain Res 887: 436–439

    PubMed  CAS  Google Scholar 

  157. Cesena RM, Calcutt NA (1999) Gabapentin prevents hyperalgesia during the formalin test in diabetic rats. Neurosci Lett 262: 101–104

    PubMed  CAS  Google Scholar 

  158. Max MB, Lynch SA, Muir J, Shoaf SE, Smoller B, Dubner R (1992) Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. New Engl J Med 326: 1250–1256

    PubMed  CAS  Google Scholar 

  159. Byas-Smith MG, Max MB, Muir J, Kingman A (1995) Transdermal clonidine compared to placebo in painful diabetic neuropathy using a two-stage “enriched enrollment” design. Pain 60: 267–274

    PubMed  CAS  Google Scholar 

  160. Harati Y, Gooch C, Swenson M, Edelman SV, Greene D, Raskin P, Donofrio P, Cornblath D, Olson WH, Kamin M (2000) Maintenance of the long-term effectiveness of tramadol in treatment of the pain of diabetic neuropathy. J Diabetes Comp 14: 65–70

    CAS  Google Scholar 

  161. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, LaMoreaux L, Garofalo E (1998) Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280: 1831–1836

    PubMed  CAS  Google Scholar 

  162. Dejgard A, Petersen P, Kastrup J (1988) Mexiletine for treatment of chronic painful diabetic neuropathy. Lancet 1 8575–6: 9–11

    Google Scholar 

  163. Bach FW, Jensen TS, Kastrup J, Stigsby B, Dejgard A (1990) The effect of intravenous lidocaine on nociceptive processing in diabetic neuropathy. Pain 40: 29–34

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Calcutt, N.A., Freshwater, J.D. (2002). Animal models of toxic and metabolic sensory neuropathies. In: Malmberg, A.B., Chaplan, S.R. (eds) Mechanisms and Mediators of Neuropathic Pain. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8129-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8129-6_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9448-7

  • Online ISBN: 978-3-0348-8129-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics