Skip to main content

Pattern Complexity in Organogenesis and Carcinogenesis

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

This communication addresses why fractals are of interest in biology and medicine and presents two examples of the application of fractals concepts in biomedical research. Firstly, the analysis and simulation of the development of mosaic patterns in liver and adrenal gland of chimaeric animals and secondly the quantification of the complexity of epithelial profiles in the ventral surface of the tongue of rats treated with the carcinogen 4-nitroquinoline 1-oxide in drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunde A., Havlin S.Fractals and disordered systemsSpringer Verlag, New York, (1991).

    Book  MATH  Google Scholar 

  2. Weibel E. R. Fractal geometry: a design principle for living organisms.Am. J. Physiol.261: L361–L369 (1991).

    Google Scholar 

  3. Landini G. Applications of Fractal Geometry in Pathology. In:Fractal geometry in biological systems: an analytical approach( P.M. Iannaccone, M. Khokha eds.), 205–246, CRC Press, Boca Raton (1996).

    Google Scholar 

  4. Wolpert L. Positional information revisited.Development107S: 3–12 (1989).

    Google Scholar 

  5. Rossant J. Cell lineage analysis in mammalian embryogenesis.Curr. Top. Dev. Biol.23: 115–146 (1987).

    Article  Google Scholar 

  6. Ng Y. K., lannaccone P. M. Experimental chimeras: current concepts and controversies in normal development and pathogenesis.Curr Top Dev Biol27: 235–274 (1992).

    Article  Google Scholar 

  7. Khokha M. K., Landini G., Iannaccone P. M. Fractal geometry in rat chimeras demonstrates that repetitive cell division programs may generate liver parenchyma.Dev. Biol.165 (2), 545–555 (1994).

    Article  Google Scholar 

  8. Iannaccone P. M., Weinberg W. C. The histogenesis of the rat adrenal cortex: a study based on histologic analysis of mosaic pattern chimeras.J. Exp. Zool.243: 217–223 (1987).

    Article  Google Scholar 

  9. Morley S. D., Viard I., Chung B-C., Ikeda Y., Parker K. L., Mullins J. J. Variegated expression of a mouse steroid 21-hydroxylase/ß-galactosidase transgene suggests centripetal migration of adrenocortical cells.Mol. Endocrinol.10, 585–598 (1996).

    Google Scholar 

  10. lannaccone P., Morley S., Skimina T, Landini G. Fractal geometry of adrenal cortex mosaic patches; Implications for growth and development. In:Fractals and beyond: complexities in the sciences. M. Novak ed. 53–63, World Scientific, London (1998).

    Google Scholar 

  11. Iannaccone P. M. Fractal geometry in mosaic organs.a new interpretation of mosaic pattern.FASEB J.4, 1508–1512 (1990).

    Google Scholar 

  12. Ransom R.Computers and embryos. Models in developmental biologych.7 Wiley & Sons, Chichester (1981).

    Google Scholar 

  13. Bodenstein L. A dynamic simulation model of tissue growth and cell patterning.Cell Differ.19, 19–33 (1986).

    Article  Google Scholar 

  14. Bodenstein L., Sidman R. L. Cell patterning in vertebrate development: models and model systems.Curr. Topics in Dev. Biol.21, 1–29 (1987)..

    Article  Google Scholar 

  15. Iannaccone P. M., Berkwits L., Joglar J., Lindsay J., Lunde A. Probabilistic division systems modeling the generation of mosaic fields.J. Theor. Biol.141, 363–377 (1989).

    Article  Google Scholar 

  16. Landini G., Rippin J. W. Fractal fragmentation in replicative systems.Fractals1 (2), 239–246 (1993).

    Article  MATH  Google Scholar 

  17. Graham G. S. Toxic lesions of the adrenal gland and their repair.J. Med. Res.34, 241–261 (1916).

    Google Scholar 

  18. Landini G. Iannaccone P. Modelling of patterns in chimaeric liver and adrenal cortex: algorithmic organogenesis?FASEB J.14, 823–827 (2000).

    Google Scholar 

  19. Nurse P., Masui Y., Hartwell L. Understanding the cell cycle.Nature Med.4 (10), 1103–1106 (1998).

    Article  Google Scholar 

  20. Chant J., Herskowitz I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway.Cell65, 1203–1212 (1991).

    Article  Google Scholar 

  21. Chant J., Corrado K., Pringle J. R., Herskowitz I. Yeast bud5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene beml.Cell65, 1213–1224 (1991).

    Article  Google Scholar 

  22. Landini G., Rippin J.W. Fractal dimensions of the epithelial-connective tissue interfaces in premalignant and malignant epithelial lesions of the floor of the mouth. Analyt.Quant. Cytol. Histol.15(2): 144–149 (1993).

    Google Scholar 

  23. Landini G., Rippin J. W. How important is tumour shape? Quantification of the epithelial-connective tissue interface in oral lesions using local connected fractal dimension analysis.J. Pathol. 179:210–217 (1996).

    Article  Google Scholar 

  24. Landini G., Geake J. Discrimination of complex histopathological tumour profiles by experienced and inexperienced observers.J. Oral. Path. Med.26 (10), 477–479 (1997).

    Article  Google Scholar 

  25. Pindborg J. J., Reibel J., Holmstrup P. Subjectivity in evaluating oral epithelial dysplasia, carcinoma in situ and initial carcinoma.J. Oral Path.14: 698–708 (1985).

    Article  Google Scholar 

  26. Nakahara W., Fukuoda F., Sugimura T. Carcinogenic action of 4nitroquinoline N-oxide.Gann48: 129–137 (1957).

    Google Scholar 

  27. Kitano M., Hatano H., Shisa H. Strain difference of susceptibility to 4nitroquinoline 1-oxide-induced tongue carcinoma in rats.Jpn. J. Cancer Res.83: 843–850 (1992).

    Article  Google Scholar 

  28. Kitano M., Hirayama Y., Tanuma J., Matsuuchi H., Miura Y., Li T. J., Semba I., Ozaki H. S., Kokubu T., Hatano H., Tada M., Kobayashi Y., Shisa H. Genetic controls of susceptibility and resistance to 4-nitroquinoline 1-oxideinduced tongue carcinomas in rats.Jpn. J. Cancer Res.87: 1097–1101 (1996).

    Article  Google Scholar 

  29. Tanuma J., Shisa H., Hiai H., Higashi S., Yamada Y., Kamoto T., Hirayama Y., Matsuuchi H., Kitano M. Quantitative trait loci affecting 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in the rat.Cancer Res.58: 1660–1664 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Landini, G. (2002). Pattern Complexity in Organogenesis and Carcinogenesis. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8119-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8119-7_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9445-6

  • Online ISBN: 978-3-0348-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics