Skip to main content

Equivariant K-Homology of the Classifying Space for Proper Actions

  • Chapter
Proper Group Actions and the Baum-Connes Conjecture

Part of the book series: Advanced Courses in Mathematics CRM Barcelona ((ACMBIRK))

Abstract

These notes are a compendium to a series of lectures concerning the topological aspects of the Baum-Connes Conjecture — the left hand side of the equation K G* (E G) ≅ K top* (C * r (G)) — the equivariant K-homology of E G. Besides of a presentation of the material needed to compute G* (E G,the reader will find an extensive discussion of many conjectures related to the Baum-Connes Conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc. 61 (1965), 639–646.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras,Asterisque 32–3 (1976), 43–72.

    Google Scholar 

  3. H. Bass, Euler characteristics and characters of discrete groups,Invent. Math. 35 (1976), 155–196.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Baum and A. Connes, Geometric K -theory for Lie groups and foliations, L’Enseign. Math. (2) 46 (2000), no. 1–2, 3–42.

    MathSciNet  MATH  Google Scholar 

  5. P. Baum, A. Connes and N. Higson, Classifying spaces for proper actions and K - theory of group C* -algebras,Contemporary Mathematics 167 (1994), 241–291.

    Article  MathSciNet  Google Scholar 

  6. P. Baum and R. Douglas, K homology and index theory,Proc. Sympos. Pure Math. 38, Part 1, Amer. Math. Soc. 1982, 117–173.

    Article  MathSciNet  Google Scholar 

  7. G. Baumslag, E. Dyer and H. Heller, The topology of a discrete group, J. Pure Appl. Algebra 16 (1980) 1, 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Béguin, H. Bettaieb and A. Valette, K-theory for C*Algebras of One-Relator Groups,K-Theory 16 (1999), 277–298.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bekka, P.-A. Cherix and A. Valette, Proper affine isometric actions of amenable groups,in: Novikov conjecture, index theorems and rigidity, London Math. Soc. Lecture Notes series 227, Cambridge Univ. Press, 1995, vol. 2, 1–4.

    Google Scholar 

  10. A. J. Berrick, Universal groups,binate groups and acyclicity, Group Theory (Singapore, 1987), de Gruyter, Berlin 1989, 253–266.

    Google Scholar 

  11. A. J. Berrick, I. Chatterji and G. Mislin, From acyclic groups to the Bass Conjecture for amenable groups, preprint 2001.

    Google Scholar 

  12. R. Bieri, Homological Dimension of Discrete Groups, Mathematics Notes, Queen Mary College, London, 2nd ed. 1981.

    Google Scholar 

  13. S. Bigelow,Braid groups are linear,J. Amer. Math. Soc. (electronic) 14 (2001), 471–486.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Birman, A. Lubotzky and J. McCarthy, Abelian and solvable subgroups of the mapping class group, Duke Math J. 50 (1983), 1107–1120.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Bozejko, T. Januszkiewicz and R. Spatzier, Infinite Coxeter groups do not have Kazhdan’s property (T),J. Operator Theory 19 (1988), 63–67.

    MathSciNet  MATH  Google Scholar 

  16. G. Bredon, Equivariant Cohomology Theories,Springer Lecture Notes in Math. 34, 1967.

    MATH  Google Scholar 

  17. M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Grundlehren 319, 1999.

    Book  MATH  Google Scholar 

  18. K. S. Brown, Cohomology of Groups, Springer Graduate Text in Mathematics 87, 1982.

    Book  MATH  Google Scholar 

  19. M. Burger and A. ValetteIdempotents in complex group rings: theorems of Zalesskii and Bass revisited, Journal of Lie Theory 8 (1998), 219–228.

    MathSciNet  MATH  Google Scholar 

  20. J. W. Cannon, W. J. Floyd and W. R. ParryIntroductory notes on Richard Thompson’s groups, L’Enseignement Mathematique 42, 1996, 215–256.

    MathSciNet  MATH  Google Scholar 

  21. G. Carlsson, E. K. Pedersen and J. Roe, Controlled C*-theory and the injectivity of the Baum-Connes map, in preparation.

    Google Scholar 

  22. J. Chabert, Baum-Connes conjecture for some semi-direct products, J. reine angew. Math. 521 (2000), 161–184.

    MathSciNet  MATH  Google Scholar 

  23. J. Chabert,Stabilité de la conjecture de Baum-Connes pour certains produits semidirects de groupes, C. R. Acad. Sci. Paris, t. 328, Série I (1999), 1120–1132.

    Google Scholar 

  24. J. Chabert and S. Echterhoff, Permanence properties of the Baum-Connes conjecture, Documenta Math. 6 (2001), 127–183.

    MathSciNet  MATH  Google Scholar 

  25. J. Chabert, S. Echterhoff and R. Meyer, Deux remarques sur l’application de BaumConnes, C. R. Acad. Sci. Paris, t. 332, Série I (2001), 607–610.

    Google Scholar 

  26. I. Chatterji, Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups, to appear in Geom. Dedicata.

    Google Scholar 

  27. I. Chatterji and G. Mislin, Atiyah’s L 2 -Index Theorem, to appear in L’Enseign. Math.

    Google Scholar 

  28. P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A. Valette, Groups with the Haagerup property (Gromov’s a-T-menability), Birkhäuser, Progress in Math. 197, 2001.

    Book  MATH  Google Scholar 

  29. A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 39 (1990), 345–388.

    Article  MathSciNet  Google Scholar 

  30. J. Cuntz, K -theoretic amenability for discrete groups, J. reine angew. Math. 344 (1983), 180–195.

    MathSciNet  MATH  Google Scholar 

  31. J. F. Davis and W. LückSpaces over a Category and Assembly Maps in Isomorphism Conjectures in K- and L-theory, K-Theory 15 (1998), 201–252.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), no.1, 115–150.

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Dicks and T. SchickThe spectral measure of certain elements of the complex group ring of a wreath product, Geometriae Dedicata 93 (2002), 121–137.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. tom Dieck, Orbittypen and aquivariante Homologie I, Arch. Math. 23 (1972), 307–317.

    Article  MATH  Google Scholar 

  35. T. tom Dieck, Transformation Groups, Studies in Math. 8,de Gruyter 1987.

    Book  MATH  Google Scholar 

  36. J. Dodziuk, P. Linnell, V. Mathai, T. Schick and S. Yates, Approximating L 2 - invariants, and the Atiyah conjecture, preprint 2001.

    Google Scholar 

  37. A. Dold, Relations between ordinary and extraordinary homology, mimeographed notes of the Colloquium on Algebraic Topology, Aarhus, 1962, pp. 2–9 (see also J. F. Adams’ Algebraic Topology - A Student’s Guide, Cambridge University Press 1972, 167–177).

    Google Scholar 

  38. C. H. Dowker, Topology of metric complexes, Amer. J. Math. 75 (1952), 555–577.

    Article  MathSciNet  Google Scholar 

  39. A. Dranishnikov and T. Januszkiewicz, Every Coxeter group acts amenably on a compact space, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT); Topology Proc. 24 (1999), Spring, 135–141.

    Google Scholar 

  40. M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. 38 (1979), 193–215.

    MathSciNet  MATH  Google Scholar 

  41. B. Eckmann, Cyclic homology and the Bass conjecture, Comment. Math. Hely. 61 (1986), 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Eckmann, Introduction to ℓ2-methods in topology: reduced ℓ2-homology, harmonic chains and ℓ2-Betti numbers, Israel Journal of Mathematics 117 (2000), 183–219.

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Eckmann, Idempotents in a complex group algebra, projective modules, and the von Neumann algebra, Arch. Math. 76 (2001), 241–249.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. D. Elmendorf, I. Kriz, M. A. Mandell and J. P. May, Modern Foundation for Stable Homotopy Theory, in Handbook of Algebraic Topology (Ed. I. M. James),Elsevier 1995,213–253.

    Chapter  Google Scholar 

  45. I. Emmanouil, On a class of groups satisfying Bass’ conjecture, Invent. Math. 132 (1998), 307–330.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Falk and R. Randell, Pure braid groups and products of free groups, Contemp. Math. 78 (1988), 217–228.

    Article  MathSciNet  Google Scholar 

  47. J. Faraut and K. HarzallahDistances hilbertiennes invariantes sur un espace homogene, Ann. Inst. Fourier 24 (1974), 171–217.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Farber and S. Weinberger, On the zero-in-the-spectrum conjecture, Ann. of Math. (2), 154 (2001) no. 1,139–154.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. S. Farley, A proper isometric action of Thompson’s group Von Hilbert space, preprint 2001.

    Google Scholar 

  50. F. T. Farrell and P. A. Linnell, Whitehead groups and the Bass conjecture, preprint 2000.

    Google Scholar 

  51. R. I. Grigorchuk, P. Linnell, T. Schick and A. Zuk, On a conjecture of Atiyah, C. R. Acad. Sci. Paris, 331,Série I (2000), 663–668.

    Google Scholar 

  52. A. Guichardet, Cohomologie des groupes topologiques et des algebres de Lie, Cedic-F. Nathan, Paris 1980.

    MATH  Google Scholar 

  53. U. Haagerup, An example of a non-nuclear C* -algebra which has the metric approximation property, Invent. Math. 50 (1979), 279–293.

    Article  MathSciNet  MATH  Google Scholar 

  54. I. Hambleton and E. K. Pedersen, Identifying assembly maps in K- and L-theory, preprint 2001.

    Google Scholar 

  55. P. de la Harpe, Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris, 307 (1988), 771–774.

    MATH  Google Scholar 

  56. P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Asterisque 175, Soc. Math. France 1989.

    MATH  Google Scholar 

  57. A. Hattori, Rank element of a projective module, Nagoya J. Math. 25 (1965), 113–120.

    MathSciNet  MATH  Google Scholar 

  58. N. Higson, Bivariant K -theory and the Novikov conjecture, Geom. Funct. Anal. 10 (2000), 563–581.

    Article  MathSciNet  MATH  Google Scholar 

  59. N. Higson and G. Kasparov, Operator K -theory for groups which act properly and isometrically on Euclidean space, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 131–142.

    Article  MathSciNet  MATH  Google Scholar 

  60. N. Higson, V. Lafforgue and G. Skandalis, Counterexamples to the Baum-Connes Conjecture, preprint 2001.

    Google Scholar 

  61. N. Higson, E. K. Pedersen and J. Roe, C * -algebras and controlled topology, K-theory 11 (1997), 209–239.

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Higson and J. Roe, Amenable group actions and the Novikov conjecture, J. reine angew. Math. 519 (2000), 143–153.

    MathSciNet  MATH  Google Scholar 

  63. N. Higson and J. Roe, Analytic K-Homology, Oxford Mathematical Monographs, Oxford University Press, 2000.

    MATH  Google Scholar 

  64. N. Higson, J. Roe and T. Schick, Spaces with vanishing ℓ 2 -homology and their fun damental groups (after Farber and Weinberger), Geom. Dedicata 87 (2001) no.1–3, 335–343.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Jakob, A bordism-type description of homology, Manuscripta Math. 96 (1998), 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  66. P. Jolissaint, Rapidly decreasing functions in reduced C * -algebras of groups, Trans. Amer. Math. Soc. 317 (1990), 167–196.

    MathSciNet  MATH  Google Scholar 

  67. P. Julg, Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes, Séminaire BOURBAKI, Astérisque 252 (1998), Exp. No. 841, 4, 151–183.

    MathSciNet  Google Scholar 

  68. D. M. Kan and W. P. Thurston, Every connected space has the homology of a K (π, 1), Topology 15 (1976), 253–258.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Karoubi, K-Theory, An Introduction, Springer Grundlehren der Mathematischen Wissenschaften, 226, 1978.

    Book  Google Scholar 

  70. G. G. Kasparov, Equivariant K K -theory and the Novikov conjecture, Invent. Math. 91 (1988), 147–201.

    Article  MathSciNet  MATH  Google Scholar 

  71. D. Krammer, The braid group B4 is linear, Invent. Math. 142 (2000), 451–486.

    Article  MathSciNet  MATH  Google Scholar 

  72. P. H. Kropholler, Hierarchical decompositions, generalized Tate cohomology,and groups of type FP , in: (A. Duncan, N. Gilbert and J. Howie, eds.) Proceedings of the Edinburgh Conference on Geometric Group Theory, 1993, Cambridge U. P. Lond. Math. Soc. Lecture Note Ser. 204 (1995), 190–216.

    Google Scholar 

  73. P. H. Kropholler and G. Mislin,On groups acting on finite dimensional spaces with finite stabilizers, Comment. Math. Hely. 73 (1998), 122–136.

    Article  MathSciNet  MATH  Google Scholar 

  74. V. Lafforgue, Une démonstration de la conjecture de Baum-Connes pour les groupes reductifs sur un corps p-adique et pour certains groups discrets possédant la propriété (T), C.R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 5, 439–444.

    Article  MathSciNet  MATH  Google Scholar 

  75. V. Lafforgue, A proof of property (RD) for cocompact lattices of SL(3, ℝ)and SL(3, ℂ), J. Lie Theory 10, 2000, no.2, 255–267.

    MathSciNet  MATH  Google Scholar 

  76. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002), 1–95.

    Article  MathSciNet  MATH  Google Scholar 

  77. I. J. Leary, in preparation.

    Google Scholar 

  78. A. LichnerowiczSpineurs harmoniques, C. R. Acad. Sci. Paris, Sér A-B 257 (1963), 7–9.

    MathSciNet  MATH  Google Scholar 

  79. P. A. Linnell, Decomposition of augmentation ideals and relation modules, Proc. London Math. Soc. (3) 47, (1983), 83–127.

    Article  MathSciNet  MATH  Google Scholar 

  80. P. A. Linnell, Analytic version of the zero divisor conjecture, in Geometry and cohomology in group theory (Durham 1994), Cambridge University Press, 252 (1998), 209–248.

    MathSciNet  Google Scholar 

  81. P. Linnell and T. Schick, Finite group extensions and the Atiyah conjecture,in preparation.

    Google Scholar 

  82. J. Lott, The zero-in-the-spectrum question, L’Enseignement Mathématique 42 (1996), 341–376.

    MathSciNet  MATH  Google Scholar 

  83. W. Lück, Transformation Groups and Algebraic K-Theory,Lecture Notes in Mathematics 1408, Springer 1989.

    Google Scholar 

  84. W. Lück,Hilbert modules and modules over finite von Neumann algebras and appli cations to L 2 -invariants, Math. Ann. 309 (1997), 247–285.

    Article  MathSciNet  MATH  Google Scholar 

  85. W. Lück,Dimension theory of arbitrary modules over finite von Neumann algebras and L 2 -Betti numbers I: Foundations, J. reine angew. Math. 495 (1998), 135–162.

    MathSciNet  MATH  Google Scholar 

  86. W. Lück,Dimension theory of arbitrary modules over finite von Neumann algebras and L 2 -Betti numbers II. Applications to Grothendieck groups, L 2 -Euler characteristic and Burnside groups, J. reine angew. Math. 496 (1998), 213–236.

    MathSciNet  MATH  Google Scholar 

  87. W. Lück, The type of the classifying space for a family of subgroups,J. Pure Appl. Algebra 149 (2000), 177–203.

    Article  MathSciNet  MATH  Google Scholar 

  88. W. LückChern characters for proper equivariant homology theories and applications to K- and L-theory, J. reine angew. Math. 543 (2002), 193–234.

    Article  MathSciNet  MATH  Google Scholar 

  89. W. Lück, The relation between the Baum-Connes Conjecture and the Trace Conjecture, Invent. Math. 149 (2002), 123–152.

    Article  MathSciNet  MATH  Google Scholar 

  90. W. Lück, L 2 -invariants of Regular Coverings of Compact Manifolds and CW- Complexes, in: Handbook of Geometric Topology, Elsevier Sciences 2002, 735–817.

    Google Scholar 

  91. W. Lück, L 2 -Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 44, Springer 2002.

    Book  Google Scholar 

  92. W. Lück and D. Meintrup, On the universal space for group actions with compact isotropy, Proceedings of the conference “Geometry and Topology”in Aerhus, August 1998, editors: K. Grove, I. Madsen abd E. Pedersen, Contemporary Mathematics AMS 258 (2000), 293–305.

    Google Scholar 

  93. W. Lück and B. Oliver, Chern characters for equivariant K-theory of proper G-CW- complexes, in: Cohomological methods in homotopy theory (Bellaterra,1998), Prog. Math. 196, Birkhauser 2001,217–247.

    Google Scholar 

  94. R. C. Lyndon and P. E. Schupp: Combinatorial Group Theory,Ergebnisse der Mathematik und ihrer Grenzgebiete 89, 1977.

    MATH  Google Scholar 

  95. M. Matthey,K-theories, C * -algebras and assembly maps,Thesis, University of Neuchâtel (Switzerland), 2000.

    Google Scholar 

  96. J. P. May, Equivariant Homotopy and Cohomology Theory, AMS Regional Conference Series in Mathematics 91, 1996.

    MATH  Google Scholar 

  97. J. MilnorConstruction of universal bundles, I,Ann. of Math. 63 (1956), 272–284.

    Article  MathSciNet  MATH  Google Scholar 

  98. I. Mineyev and G. Yu, The Baum-Connes conjecture for hyperbolic groups,Invent. Math. 149 (2002), 97–122.

    Article  MathSciNet  MATH  Google Scholar 

  99. A. S. Miscenko, Infinite-dimensional representations of discrete groups and higher signatures, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 81–106.

    MathSciNet  Google Scholar 

  100. G. MislinMapping class groups, characteristic classes and Bernoulli numbers, CRM Proceedings and Lecture Notes, 6 (1994), 103–131.

    MathSciNet  Google Scholar 

  101. G. Mislin, On the classifying space for proper actions, in: Cohomological methods in homotopy theory (Bellaterra 1998), Progr. Math. 196, Birkhauser 2001,263–269.

    Google Scholar 

  102. P. S. Mostert, Local cross sections in locally compact groups,Proc. Amer. Math. Soc. 4 (1953), 645–649.

    Article  MathSciNet  MATH  Google Scholar 

  103. G. Niblo and L. Reeves, Groups acting on CAT(0) cube complexes,Geom. Topol. 1 (1997), approx. 7 pp. (electronic).

    Article  MathSciNet  Google Scholar 

  104. B. E. A. Nucinkis, Is there an easy algebraic characterization of universal proper G-spaces? Manuscripta Math. 102 (2000), 335–345.

    Article  MathSciNet  MATH  Google Scholar 

  105. H. Oyono-Oyono,La conjecture de Baum-Connes pour les groupes agissant sur les arbres, C.R. Acad. Sci. Paris, Sér. I 326 (1998), 799–804.

    Article  MathSciNet  MATH  Google Scholar 

  106. H. Oyono-Oyono,Baum-Connes conjecture and extensions,J. reine angew. Math. 532 (2001), 133–149.

    MathSciNet  MATH  Google Scholar 

  107. G. K. Pedersen,C * -algebras and their automorphism groups, Academic Press, 1979.

    Google Scholar 

  108. F. Peterson,Some remarks on Chern classes,Annals of Math. 69 (1959), 414–420.

    Article  MATH  Google Scholar 

  109. M. V. Pimsner, K K-groups of crossed products by groups acting on trees, Invent. Math. 86 (1986), 603–634.

    Article  MathSciNet  MATH  Google Scholar 

  110. R. T. Powers, Simplicity of the C * -algebra associated with the free group on two generators, Duke J. Math. 42 (1975), 151–156.

    Article  MathSciNet  MATH  Google Scholar 

  111. D. Rolfsen and J. Zhu, Braids, ordering and zero divisors,Journal of Knot Theory and Its Ramifications, 7 No. 6 (1998), 837–841.

    Article  MathSciNet  MATH  Google Scholar 

  112. J. Rosenberg,C * -algebras,positive scalar curvature, and the Novikov conjecture. Inst. Hautes Études Sci. Publ. Math. 58 (1983), 197–212.

    Article  Google Scholar 

  113. J. Rosenberg, Algebraic K-theory and its applications,Graduate Text in Mathematics 147,Springer-Verlag 1994.

    Book  Google Scholar 

  114. R. RoyThe trace conjecture - a counterexample, K-Theory 17 (2000), 209–213.

    Article  Google Scholar 

  115. J. A. Schafer, Relative cyclic homology and the Bass conjecture,Comment. Math. Hely. 67 (1992), 214–225.

    Article  MathSciNet  MATH  Google Scholar 

  116. J. A. SchaferThe Bass Conjecture and Group von Neumann Algebras,K-Theory 19 (2000), 211–217.

    Article  MathSciNet  MATH  Google Scholar 

  117. T. SchickA counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture,Topology 37 (1998), 1165–1168.

    Article  MathSciNet  MATH  Google Scholar 

  118. T. Schick, Finite group extensions and the Baum-Connes conjecture, preprint 2000.

    Google Scholar 

  119. T. Schick, The strong Bass conjecture for group elements of finite order and for residually finite groups,preprint 2000.

    Google Scholar 

  120. T. Schick,Integrality of L 2 -Beth numbers, Math. Ann. 317 (2000), 727–750.

    Article  MathSciNet  MATH  Google Scholar 

  121. J.-P. Serre, Linear representations of finite groups, Springer-Verlag 1977.

    Google Scholar 

  122. J.-P. Serre, Trees, Springer-Verlag 1980.

    Google Scholar 

  123. J.-P. Serre, Galois Cohomology, Springer-Verlag 1997.

    Google Scholar 

  124. J. Slominska,On the equivariant Chern homomorphisms,Bull. Acad. Pol. 24 (1976), 909–913.

    MathSciNet  MATH  Google Scholar 

  125. E. H. Spanier, Algebraic Topology, McGraw-Hill 1966.

    Google Scholar 

  126. J. Stallings, Centerless groups - an algebraic formulation of Gottlieb’s theorem, Topology, 4 (1965), 129–134.

    Article  MathSciNet  MATH  Google Scholar 

  127. S. Stolz, Survey on the problem of finding a positive scalar curvature metric on a closed manifold, in preparation.

    Google Scholar 

  128. R. M. Switzer, Algebraic Topology - Homotopy and Homology, Grundlehren 212, Springer Verlag 1973.

    Google Scholar 

  129. J. L. Tu, The Baum-Connes conjecture and discrete group actions on trees,K-Theory 17 no.4 (1999), 303–318.

    Article  MathSciNet  MATH  Google Scholar 

  130. A. Valette, Introduction to the Baum-Connes Conjecture, Lecture Notes in Mathematics, ETH Zurich, Birkhauser Verlag 2002.

    Book  MATH  Google Scholar 

  131. R. WoodBanach algebras and Bott periodicity, Topology 4 (1966), 371–389.

    Article  MathSciNet  MATH  Google Scholar 

  132. Z. Yoshimura, A note on complex K-theory of infinite CW -complexes,Journal of the Mathematical Society of Japan, 26, No.2 (1974), 289–295.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Mislin, G. (2003). Equivariant K-Homology of the Classifying Space for Proper Actions. In: Proper Group Actions and the Baum-Connes Conjecture. Advanced Courses in Mathematics CRM Barcelona. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8089-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8089-3_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-0408-9

  • Online ISBN: 978-3-0348-8089-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics