Skip to main content

A Class of Matrix-valued Schrödinger Operators with Prescribed Finite-band Spectra

  • Chapter
Reproducing Kernel Spaces and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 143))

Abstract

We construct a class of matrix-valued Schrödinger operators with prescribed finite-band spectra of maximum spectral multiplicity. The corresponding matrix potentials are shown to be stationary solutions of the KdV hierarchy. The methods employed in this paper rely on matrix-valued Her-glotz functions, Weyl— Titchmarsh theory, pencils of matrices, and basic inverse spectral theory for matrix-valued Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z.S. Agranovich and V.A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach, New York, 1963.

    MATH  Google Scholar 

  2. D. Alpay and I. Gohberg, Inverse spectral problem for differential operators with rational scattering matrix functions, J. Diff. Eq. 118 1–19 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Alpay and I. Gohberg, Inverse problem for Sturm-Liouville operators with rational reflection coefficient, Integral Equations Operator Theory 30, 317–325 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. D.Z. Arov and H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, I: foundations, Integral Equations Operator Theory 29, 373–454 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. D.Z. Arov and H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, II: the inverse monodromy problem, Integral Equations Operator Theory 36, 11–70 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. D.Z. Arov and H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems, III: more on the inverse monodromy problem, Integral Equations Operator Theory 36, 127–181 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Asano and Y. Kato, Algebraic and Spectral Methods for Nonlinear Wave Equations, Longman, New York, 1990.

    MATH  Google Scholar 

  8. I. Avramidi and R. Schimming, A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr. 219, 45–64 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. E.D. Belokolos, F. Gesztesy, K.A. Makarov, and L.A. Sakhnovich, Matrix-valued generalizations of the theorems of Borg and Hochstadt, to appear in Recent Advances in Evolution Equations, G. Ruiz Goldstein, R. Nagel, and S. Romanelli (eds.), Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York.

    Google Scholar 

  10. R. Benguria and M. Loss, A simple proof of a theorem of Laptev and Weidl, Math. Res. Lett. 7, 195–203 (2000).

    MathSciNet  MATH  Google Scholar 

  11. F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transfor. II, Nuovo Cim. 39B, 1–54 (1977).

    Article  MathSciNet  Google Scholar 

  12. R. Carlson, Large eigenvalues and trace formulas for matrix Sturm-Liouville problems, SIAM J. Math. Anal. 30, 949–962 (1999).

    MATH  Google Scholar 

  13. R. Carlson, Compactness of Floquet isospectral sets for the matrix Hill’s equation, Proc. Amer. Math. Soc. 128, 2933–2941 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Carlson, Eigenvalue estimates and trace formulas for the matrix Hill’s equation, J. Diff. Eq. 167, 211–244 (2000).

    Article  MATH  Google Scholar 

  15. R. Carlson, An inverse problem for the matrix Schrödinger equation, preprint, 2001.

    Google Scholar 

  16. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger operators, Birkhäuser, Boston, MA, 1990.

    Book  Google Scholar 

  17. H.-H. Chern, On the construction of isospectral vectorial Sturm-Liouville differential equations, preprint, 1998.

    Google Scholar 

  18. H.-H. Chern and C-L. Shen, On the n-dimensional Ambarzumyan’s theorem, Inverse Problems 13, 15–18 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. S.L. Clark, Asymptotic behavior of the Titchmarsh-Weyl coefficient for a coupled second order system, in “Ordinary and Delay Differential Equations”, J. Wiener and J.K. Hale (eds.), Longman, New York, 1992, 24–28.

    Google Scholar 

  20. S. Clark and F. Gesztesy, Weyl-Titchmarsh M-function asymptotics for matrix-valued Schrödinger operators, Proc. London Math. Soc. 82, 701–724 (2001).

    MATH  Google Scholar 

  21. S. Clark and F. Gesztesy, On Povzner-Wienholtz-type Self-Adjointness Results for Matrix-Valued Sturm-Liouville Operators, Proc. Roy. Soc. Edinburgh A (to appear).

    Google Scholar 

  22. S. Clark, F. Gesztesy, H. Holden, and B.M. Levitan, Borg-type theorems for matrix-valued Schrödinger and Dirac operators, J. Diff. Eqs. 167, 181–210 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Clark and D. Hinton, A Liapunov inequality for linear Hamiltonian systems, Math. Inequ. Appl. 1, 201–209 (1998).

    MATH  Google Scholar 

  24. V.I. Derguzov, The spectrum of Hamilton’s operator with periodic coefficients Vestnik Leningrad Univ. Math. 12, 280–285 (1980).

    MATH  Google Scholar 

  25. B. Després, The Borg theorem for the vectorial Hill’s equation, Inverse Probl. 11, 97–121 (1995).

    Article  MATH  Google Scholar 

  26. L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991.

    MATH  Google Scholar 

  27. B.A. Dubrovin, Periodic problems for the Korteweg-de Vries equation in the class of finite-gap potentials, Funct. Anal. Appl. 9, 215–223 (1975).

    Google Scholar 

  28. B.A. Dubrovin, Completely integrable Hamiltonian Systems associated with Matrix operators and Abelian varieties, Funct. Anal. Appl. 11, 265–277 (1977).

    MathSciNet  Google Scholar 

  29. B.A. Dubrovin, Matrix finite-zone operators, Revs. Sci. Tech. 23, 20–50 (1983).

    Google Scholar 

  30. B.A. Dubrovin, V.B. Matveev, and S.P. Novikov, Non-linear equations of Kortewegde Vries type, finite-zone linear operators and Abelian varieties, Russian Math. Surv. 31 : 1, 59–146 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  31. I.M. Gel’fand and L.A. Dikii, The resolvent and Hamiltonian systems, Funct. Anal. Appl. 11, 93–105 (1977).

    MathSciNet  MATH  Google Scholar 

  32. I.M. Gelfand and B.M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSR. Ser. Mat. 15, 309–360 (1951) (Russian); English transl. in Amer. Math. Soc. Transl. Ser. 2 1, 253–304 (1955)

    Google Scholar 

  33. I.M. Gelfand and V.B. Lidskij, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, in “Izrail M. Gelfand, Collected Papers”, Vol. I, S.G. Gindikin, V.W. Guillemin, A.A. Kirillov, B. Kostant, S. Sternberg (eds.), Springer, Berlin, 1987, 466–504. (Amer. Math. Soc. Transl. (2) 8 143–181 (1958).)

    Google Scholar 

  34. F. Gesztesy and H. Holden, On trace formulas for Schrödinger-type operators, in Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics, D.G. Truhlar and B. Simon (eds.), Springer, New York, 1997, 121–145.

    Chapter  Google Scholar 

  35. F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, Higher order trace relations for Schrödinger operators, Revs. Math. Phys. 7, 893–922 (1995).

    MathSciNet  MATH  Google Scholar 

  36. F. Gesztesy, A. Kiselev, and K.A. Makarov, Uniqueness Results for Matrix-Valued Schrödinger, Jacobi, and Dirac-Type Operators, Math. Nachr. 239 - 240, 103–145 (2002).

    Google Scholar 

  37. F. Gesztesy, R. Ratnaseelan, and G. Teschl, The KdV hierarchy and associated trace formulas in proceedings of the International Conference on Applications of Operator Theory, I. Gohberg, P. Lancaster, P.N. Shivakumar (eds.), Operator Theory: Advances and Applications, Vol. 87, Birkhäuser, 1996, 125–163.

    Google Scholar 

  38. F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results, Commun. Math. Phys. 211, 273–287 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218, 61–138 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  40. I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965.

    MATH  Google Scholar 

  41. J.K. Hale, Ordinary Differential Equations, 2nd ed., Krieger, Malabar, Fl, 1980.

    MATH  Google Scholar 

  42. E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, 1969.

    MATH  Google Scholar 

  43. E. Hille, Ordinary Differential Equations in the Complex Domain, Dover, New York, 1997.

    Google Scholar 

  44. D.B. Hinton and J.K. Shaw, On Titchmarsh-Weyl MN-functions for linear Hamiltonian systems, J. Diff. Eqs. 40, 316–342 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  45. D.B. Hinton and J.K. Shaw, On the spectrum of a singular Hamiltonian system, Quaest. Math. 5, 29–81 (1982).

    MathSciNet  MATH  Google Scholar 

  46. D.B. Hinton and J.K. Shaw, Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Diff. Eqs. 50, 444–464 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  47. D.B. Hinton and J.K. Shaw, On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal. 15, 272–286 (1984).

    MathSciNet  MATH  Google Scholar 

  48. D.B. Hinton and J.K. Shaw, On the spectrum of a singular Hamiltonian system, II Quaest. Math. 10, 1–48 (1986).

    MathSciNet  MATH  Google Scholar 

  49. A.R. Its and V.B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation, Theoret. Math. Phys. 23, 343–355 (1975).

    MathSciNet  Google Scholar 

  50. M. Jodeit and B.M. Levitan, Isospectral vector-valued Sturm-Liouville problems, Lett. Math. Phys. 43, 117–122 (1998).

    MathSciNet  MATH  Google Scholar 

  51. M. Jodeit and B.M. Levitan, The isospectrality problem for some vector-valued Sturm-Liouville boundary problems, Russ. J. Math. Phys 6, 375–393 (1999).

    MathSciNet  MATH  Google Scholar 

  52. R.A. Johnson, m-Functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl., Ser. 4 ,147, 211–248 (1987).

    Article  Google Scholar 

  53. R. Johnson, S. Novo, and R. Obaya, Ergodic properties and Weyl M-functions for random linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A, 1045–1079 (2000).

    Article  MathSciNet  Google Scholar 

  54. V.I. Kogan and F.S. Rofe-Beketov, On square-integrable solutions of symmetric systems of differential equations of arbitrary order, Proc. Roy. Soc. Edinburgh 74A, 1–40 (1974).

    MathSciNet  Google Scholar 

  55. S. Kotani and B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119, 403–429 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  56. A.M. Krall, M(À) theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal. 20, 664–700 (1989).

    MathSciNet  MATH  Google Scholar 

  57. A.M. Krall, M(À) theory for singular Hamiltonian systems with two singular points, SIAM J. Math. Anal. 20, 701–715 (1989).

    MathSciNet  MATH  Google Scholar 

  58. M.G. Krein, Foundations of the theory of λ-zones of stability of a canonical system of linear differential equations with periodic coefficients, Amer. Math. Soc. Transi. (2) 120, 1–70 (1983).

    Google Scholar 

  59. M.G. Krein, On tests for stable boundedness of solutions of periodic canonical systems, Amer. Math. Soc. Transi (2) 120, 71–110 (1983).

    Google Scholar 

  60. M.G. Krein and A.A. Nudelman, The Markov Moment Problem and Extremal Problems, Amer. Math. Soc., Providence, 1977.

    Google Scholar 

  61. B.M. Levitan, On the solvability of the inverse Sturm-Liouville problem on the entire line, Sov. Math. Dokl. 18, 597–600 (1977).

    MATH  Google Scholar 

  62. B.M. Levitan ,On the solvability of the inverse Sturm-Liouville problem on the whole axis in the case of an infinite number of lacunas in the spectrum, Sov. Math. Dokl. 18. 964–967 (1977).

    MATH  Google Scholar 

  63. B.M. Levitan, An inverse problem for the Sturm-Liouville operator in the case of finitezone and infinite-zone potentials, Trans. Moscow Math. Soc. 1984, No. 1, 1–34.

    Google Scholar 

  64. B.M. Levitan, Inverse Sturm-Liouville Problems VNU Science Press, Utrecht, 1987.

    MATH  Google Scholar 

  65. B.M. Levitan and M.G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surv. 19:2, 1–63 (1964).

    Google Scholar 

  66. B.M. Levitan and A.V. Savin, The inverse problem on the half-line for finite zone potentials, Moscow Univ. Math. Bull. 43, No. 1, 27–34 (1988).

    MathSciNet  MATH  Google Scholar 

  67. M.M. Malamud, Similarity of Volterra operators and related questions of the theory of differential equations of fractional order, Trans. Moscow Math. Soc. 55, 57–122 (1994).

    MathSciNet  Google Scholar 

  68. M.M. Malamud, Uniqueness questions in inverse problems for systems of ordinary differential equations on a finite interval, Trans. Moscow Math. Soc. 60, 173–224 (1999).

    Google Scholar 

  69. Yu.I. Manin, Matrix solitons and bundles over curves with singularities, Funct. Anal. Appl. 12, 286–295 (1978).

    Google Scholar 

  70. V.A. Marchenko, Nonlinear Equations and Operator Algebras, Reidel, Dordrecht, 1988.

    Google Scholar 

  71. A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, Vol. 71, Amer. Math. Soc., Providence, RI, 1988.

    Google Scholar 

  72. A.S. Markus and V.I. Matsaev, Factorization of a weakly hyperbolic bundle, Funct. Anal. Appl. 10, 69–71 (1976).

    MATH  Google Scholar 

  73. A.S. Markus and V.I. Matsaev, On the spectral factorization of holomorphic operator-functions, Sel. Math. Sov. 4, 325–354 (1985).

    MATH  Google Scholar 

  74. L. Martínez Alonso and E. Olmedilla, Trace identities in the inverse scattering transform method associated with matrix Schrödinger operators, J. Math. Phys. 23, 2116–2121 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  75. M.A. Naimark, Linear Differential Operators, Part II F. Ungar, New York, 1968.

    Google Scholar 

  76. R.G. Newton and R. Jost, The construction of potentials from the S-matrix for systems of differential equations, Nuovo Cim. 1, 590–622 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  77. E. Olmedilla, Inverse scattering transform for general matrix Schrödinger operators and the related symplectic structure, Inverse Problems 1, 219–236 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  78. E. Olmedilla, L. Martínez Alonso, and F. Guil, Infinite-dimensional Hamiltonian systems associated with matrix Schrödinger operators, Nuovo Cim. 61 B, 49–61 (1981).

    Article  Google Scholar 

  79. P.J. Olver and V.V. Sokolov ,Integrable evolution equations on assciative algebras, Commun. Math. Phys. 193, 245–268 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  80. S.A. Orlov, Nested matrix disks analytically depending on a parameter and theorems on the invariance of ranks of radii of limiting disks, Math. USSR Izv. 10, 565–613 (1976).

    Article  Google Scholar 

  81. V.G. Papanicolaou, Trace formulas and the behavior of large eigenvalues, SIAM J. Math. Anal. 26, 218–237 (1995).

    MathSciNet  MATH  Google Scholar 

  82. I. Polterovich, Heat kernel asymptotics for Laplace type operators and matrix KdV hierarchy, preprint, 2000.

    Google Scholar 

  83. A.Ya. Povzner, The expansion of arbitrary functions in eigenfunctions of the operator -△u+cu,Mat. Sbornik 32, 109–156 (1953) (Russian.) English translation in Amer. Math. Soc. Transi. (2) 60, 1–49 (1967).

    Google Scholar 

  84. F.S. Rofe-Beketov, Expansions in eigenfunctions of infinite systems of differential equations in the non-self-adjoint and self-adjoint cases, Mat. Sb. 51, 293–342 (1960). (Russian.)

    MathSciNet  Google Scholar 

  85. F.S. Rofe-Beketov, The spectrum of non-selfadjoint differential operators with periodic coefficients, Sov. Math. Dokl. 4, 1563–1566 (1963).

    Google Scholar 

  86. F.S. Rofe-Beketov, The spectral matrix and the inverse Sturm-Liouville problem on the axis (∞, ∞), Teor. Funktsii Funkts. Analiz Prilozh. 4, 189–197 (1967). (Russian.)

    MathSciNet  MATH  Google Scholar 

  87. F.S. Rofe-Beketov, The inverse Sturm-Liouville problem for the spectral matrix on the whole axis and associated problems, in Integral Equations and Inverse Problems, V. Petkov and R. Lazarov Eds.), Longman, New York, 1991, p. 234–238.

    Google Scholar 

  88. F.S. Rofe-Beketov and A.M. Hol’kin, On the connection between spectral and oscillation properties of the Sturm-Liouville matrix problem, Math. USSR Sbornik 31, 365–378 (1977).

    Article  MATH  Google Scholar 

  89. F.S. Rofe-Beketov and A.M. Kholkin, Spectral Analysis of Differential Operators. Connection between Spectral and Oscillatory Properties, Mariupol, 2001.

    Google Scholar 

  90. A.L. Sakhnovich, Asymptotic behavior of spectral functions of an S-node, Sov. Math. (Iz. VUZ) 32:9, 92–105 (1988).

    MathSciNet  MATH  Google Scholar 

  91. A.L. Sakhnovich, Spectral functions of a canonical system of order 2n, Math. USSR Sbornik 71, 355–369 (1992).

    Article  MathSciNet  Google Scholar 

  92. A. Sakhnovich, Iterated Backland-Darboux transform for canonical systems, J. Funct. Anal. 144, 359–370 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  93. A. Sakhnovich, Canonical systems and transfer matrix-functions, Proc. Amer. Math. Soc. 125, 1451–1455 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  94. L.A. Sakhnovich, Evolution of spectral data and nonlinear equations, Ukrain. Math. J. 40, 459–461 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  95. L.A. Sakhnovich, Inverse problems for equations systems, in Matrix and Operator Valued Functions: The Vladimir Petrovich Potapov Memorial Volume, I. Gohberg and L.A. Sakhnovich (eds.), Operator Theory: Advances and Applications, Vol. 72, Birkhäuser, Basel, 1994, 202–211.

    Chapter  Google Scholar 

  96. L.A. Sakhnovich, Method of operator identities and problems of analysis, St. Petersburg Math. J. 5, 1–69 (1994).

    MathSciNet  Google Scholar 

  97. L.A. Sakhnovich, Spectral problem on half-axis, Methods Funct. Anal. Topology 2, 128–140 (1996).

    MathSciNet  MATH  Google Scholar 

  98. L.A. Sakhnovich, Interpolation Theory and its Applications, Kluwer, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  99. L.A. Sakhnovich, Spectral analysis of a class of canonical differential systems, St. Petersburg Math. J. 10, 147–158 (1999).

    MathSciNet  Google Scholar 

  100. L.A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Operator Theory: Advances and Applications, Vol. 107, Birkhäuser, Basel, 1999.

    Google Scholar 

  101. C.-L. Shen, Some eigenvalue problems for the vectorial Hill’s equation, Inverse Probl. 16, 749–783 (2000).

    Article  MATH  Google Scholar 

  102. C.-L. Shen ,Some inverse spectral problems for vectorial Sturm-Liouville equations, Inverse Probl. 17, 1253–1294 (2001).

    Article  MATH  Google Scholar 

  103. C.-L. Shen and C.-T. Shieh, Two inverse eigenvalue problems for vectorial Sturm-Liouville equations, Inverse Probl. 14, 1331–1343 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  104. M. Sodin and P. Yuditskii, Almost periodic Sturm-Liouville operators with Cantor homogeneous spectrum, Comment. Math. Helvetici 70, 639–658 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  105. C. Thurlow, A generalisation of the inverse spectral theorem of Levitan and Gasymov, Proc. Roy. Soc Edinburgh 84A, 185–196 (1979).

    Article  MathSciNet  Google Scholar 

  106. I. Trooshin, Asymptotics for the spectral and Weyl functions of the operator-valued Sturm-Liouville problem, in “Inverse Problems and Related Topics”, G. Nakamura, S. Saitoh, J.K. Seo, and M. Yamamoto (eds.), Chapman & Hall/CRC, Res. Notes Math. 419, Boca Raton, FL, 2000, 189–208.

    Google Scholar 

  107. M. Wadati and T. Kamijo, On the extension of inverse scattering method, Progr. Theoret. Phys. 52, 397–414 (1974).

    MathSciNet  MATH  Google Scholar 

  108. E. Wienholtz, Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus, Math. Ann. 135, 50–80 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  109. V.A. Yakubovich, Nonoscillation of linear periodic Hamiltonian equations, and related topics, St. Petersburg Math. J. 3, 1165–1188 (1992).

    MathSciNet  Google Scholar 

  110. V.A. Yakubovich and V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients 1, Wiley, New York, 1975.

    MATH  Google Scholar 

  111. V.A. Yakubovich and V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients 2, Wiley, New York, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Gesztesy, F., Sakhnovich, L.A. (2003). A Class of Matrix-valued Schrödinger Operators with Prescribed Finite-band Spectra. In: Alpay, D. (eds) Reproducing Kernel Spaces and Applications. Operator Theory: Advances and Applications, vol 143. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8077-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8077-0_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9430-2

  • Online ISBN: 978-3-0348-8077-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics