Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 145))

Abstract

The goal of the paper is to derive L p L q decay estimates for Klein—Gordon equations with time-dependent coefficients. We explain the influence of the relation between the mass term and the wave propagation speed on L p L q decay estimates. Contrary to the classical Klein—Gordon case we cannot expect in each case a Klein—Gordon type decay rate. One has wave type decay rates, too. Moreover, under certain assumptions no L p L q decay estimates can be proved. In these cases the solution has a Floquet behavior. More precisely, one can show that the energy cannot be estimated from above by time-dependent functions with a suitable growth order if t tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Brenner, On L p L q estimates for the wave-equation, Math. Zeit. 145 (1975), no. 3, 251–254.

    Article  MATH  Google Scholar 

  2. F. Colombini, D. DelSanto and M. Reissig, On the optimal regularity of coefficients in hyperbolic Cauchy problems,Preprint del Dipartimento di Scienze matematiche dell’Universita di Trieste, n. 517 (2002).

    Google Scholar 

  3. M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations,Scottish Academic Press, Edinburgh and London, 1973.

    MATH  Google Scholar 

  4. A. Galstian and M. Reissig, L p L q decay estimates for a Klein-Gordon type model equation, Eds. H. Begehr et al.,Proceedings of the second ISAAC congress, vol. 2, 1355–1369, Kluwer (2000).

    Chapter  Google Scholar 

  5. F. Hirosawa, Energy decay for degenerate hyperbolic equations of Klein-Gordon type with dissipative term, Funkcial. Ekvac. 43 (2000), no. 1, 163–191.

    MathSciNet  MATH  Google Scholar 

  6. F. Hirosawa, On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients, to appear.

    Google Scholar 

  7. F. Hirosawa, Precise energy decay estimates for the dissipative hyperbolic equations in an exterior domain,Mathematical Research Note 2000–008, Institute of Mathematics, University of Tsukuba.

    Google Scholar 

  8. L. Hörmander, Translation invariant operators in L P space,Acta Math. 104 (1960), 93–140.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Hörmander, Remarks on the Klein-Gordon equation, Journées Equations aux Dérivées Partielles, Saint Jean de Monts, 1987.

    Google Scholar 

  10. S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,J. Math. Soc. Japan 47 (1995), no. 4, 617–653.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Klainerman, Global existence for nonlinear wave equations,Comm. Pure Appl. Math. 33 (1980), no. 1, 43–101.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Kubo and M. Reissig, Construction of parametrix for hyperbolic equations with fast oscillations in non-Lipschitz coefficients, Mathematical Research Note 2002–003, Institute of Mathematics, University of Tsukuba.

    Google Scholar 

  13. O. Liess, Decay estimates for the solutions of the system of crystal optics, Asymptotic Analysis 4 (1991), no. 1, 61–95.

    MathSciNet  MATH  Google Scholar 

  14. W. Littman, Fourier transformations of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Magnus and St. Winkler, Hill’s Equation,Interscience Publishers, New YorkLondon-Sydney, 1966.

    MATH  Google Scholar 

  16. A. Matsumura, Energy decay of solutions of dissipative wave equations, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 7, 232–236.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Mochizuki and T. Motai, On energy decay-nondecay problems for wave equations with nonlinear dissipative term in \( {\mathbb{R}^N} \) J. Math. Soc. Japan 47 (1995), no. 3, 405–421.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Pecher, L p -Abschätzungen and klassische Lösungen für nichtlineare Wellenglei chungen. I,Math. Zeitschrift 150 (1976), no. 2, 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Racke, Lectures on nonlinear evolution equations,Aspects of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1992.

    MATH  Google Scholar 

  20. M. Reissig, Klein-Gordon type decay rates for wave equations with a time-dependent dissipation,Adv. Math. Sci. Appl. 11 (2001), no. 2, 859–891.

    MathSciNet  MATH  Google Scholar 

  21. M. Reissig and K. Yagdjian, About the influence of oscillations on Strichartz-type decay estimates, Rend. Sem. Mat. Univ. Polit. Torino 58 (2000), no. 3, 117–130.

    MathSciNet  Google Scholar 

  22. M. Reissig and K. Yagdjian, One application of Floquet’s theory to L p — L q estimates for hyperbolic equations with very fast oscillations,Math. Meth. Appl. Sci. 22 (1999), no. 11, 937–951.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Reissig and K. Yagdjian, Klein-Gordon type decay rates for wave equations with time-dependent coefficients,Banach Center Publications, 52 (2000), 189–212.

    MathSciNet  Google Scholar 

  24. M. Reissig and K. Yagdjian, L p — L q estimates for the solutions of hyperbolic equations of second order with time-dependent coefficients — Oscillations via growth —, Preprint 98–5, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg 1998, ISSN 1433–9307.

    Google Scholar 

  25. M. Reissig and K. Yagdjian, Weakly hyperbolic equations with fast oscillating coefficients,Osaka J. Math. 36 (1999), no. 2, 437–464.

    MathSciNet  MATH  Google Scholar 

  26. M. Stoth, Globale klassische Lösungen der quasilinearen Elastizitätsgleichungen für kubisch elastische Medien im \(\mathbb{R}^2 \),SFB 256 Preprint 157, Universität Bonn, 1991.

    Google Scholar 

  27. R. Strichartz, A priori estimates for the wave-equation and some applications,J. Funct. Anal. 5 (1970), 218–235.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Uesaka, The total energy decay of solutions for the wave equation with a dissipative term,J. Math. Kyoto Univ. 20 (1980), no. 1, 57–65.

    MathSciNet  MATH  Google Scholar 

  29. W. v. Wahl, L P -decay rates for homogeneous wave-equations,Math. Zeit. 120 (1971), 93–106.

    Article  MATH  Google Scholar 

  30. K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple characteristics,micro-local approach, Math. Topics, Akademie-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  31. K. Yagdjian, Parametric resonance and nonexistence of global solution to nonlinear wave equations, J. Math. Anal. Appl. 260 (2001), no. 1, 251–268.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Sci. Sinica, Ser. A 30 (1987), no. 11, 1133–1149.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Hirosawa, F., Reissig, M. (2003). From Wave to Klein—Gordon Type Decay Rates. In: Albeverio, S., Demuth, M., Schrohe, E., Schulze, BW. (eds) Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations. Operator Theory: Advances and Applications, vol 145. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8073-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8073-2_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9429-6

  • Online ISBN: 978-3-0348-8073-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics