Advertisement

Algebraic Viewpoint

  • Michèle Audin
  • Ana Cannas da Silva
  • Eugene Lerman
Part of the Advanced Courses in Mathematics CRM Barcelona book series (ACMBIRK)

Abstract

The goal of this lecture is to explain toric manifolds as a special class of projective varieties. The first five sections contain a crash course on notions and basic facts about algebraic varieties, mostly in order to fix notation. The combinatorial flavor of toric varieties is postponed until Lecture 5

Keywords

Projective Variety Toric Variety Regular Function Zariski Topology Affine Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Abraham, R., Marsden, J. E., Foundations of Mechanics, second edition, Addison-Wesley, Reading, 1978.Google Scholar
  2. [2]
    Arnold, V., Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60 Springer-Verlag, New York, 1978.Google Scholar
  3. [3]
    Atiyah, M., Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Atiyah, M., Bott, R., The moment map and equivariant cohomology, Topology 23 (1984), 1–28.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Atiyah, M., Macdonald, I., Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.zbMATHGoogle Scholar
  6. [6]
    Audin, M., The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics 93 Birkhäuser Verlag, Basel, 1991.Google Scholar
  7. [7]
    Audin, M., Spinning Tops. A Course on Integrable Systems, Cambridge Studies in Advanced Mathematics 51 Cambridge University Press, Cambridge, 1996.Google Scholar
  8. [8]
    Batyrev, V., Mirror symmetry and toric geometry, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. 1998 Extra Vol. II, 239–248.MathSciNetGoogle Scholar
  9. [9]
    Bott, R., Tu, L., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics 82 Springer-Verlag, New York-Berlin, 1982.Google Scholar
  10. [10]
    Bredon, G., Introduction to Compact Transformation Groups,Pure and Applied Mathematics 46 Academic Press, New York-London, 1972.Google Scholar
  11. [11]
    Bröcker, T., tom Dieck, T., Representations of Compact Lie Groups, Graduate Texts in Mathematics 98 Springer-Verlag, New York, 1985.Google Scholar
  12. [12]
    Cannas da Silva, A., Lectures on Symplectic Geometry, Lecture Notes in Mathematics 1764 Springer-Verlag, Berlin, 2001.Google Scholar
  13. [13]
    D., Recent developments in toric geometry, Algebraic Geometry - Santa Cruz 1995, 389–436, Proc. Sympos. Pure Math. 62 part 2, Amer. Math. Soc., Providence1997. Google Scholar
  14. [14]
    Danilov, V., The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2 (200), 85–134, 247,English translation: Russian Math. Surveys 33 (1978), no. 2, 85–134. Google Scholar
  15. [15]
    Delzant, T., Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), 315–339. MathSciNetzbMATHGoogle Scholar
  16. [16]
    Demazure, M., Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588. MathSciNetGoogle Scholar
  17. 17.
    Duistermaat, J.J., On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980), 687–706. MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Duistermaat, J.J., Equivariant cohomology and stationary phase, Symplectic Geometry and Quantization (Sanda and Yokohama, 1993), edited by Maeda, Y., Omori, H. and Weinstein, A., 45-62, Contemp. Math. 179 Amer. Math. Soc., Providence, 1994. Google Scholar
  19. [19]
    Duistermaat, J.J., Heckman, G., On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259–268; Addendum, Invent. Math. 72 (1983), 259–268. MathSciNetzbMATHGoogle Scholar
  20. [20]
    Ewald, G. Combinatorial Convexity and Algebraic Geometry,Graduate Texts in Mathematics168 Springer-Verlag, New York, 1996. CrossRefzbMATHGoogle Scholar
  21. [21]
    Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton, 1993. Google Scholar
  22. [22]
    Gelfand, I., Kapranov, M., Zelevinsky, A., Discriminants,Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications, Birkhäuser Boston, 1994. Google Scholar
  23. [23]
    Griffiths, P., Harris, J., Principles of Algebraic Geometry, Chapter 0, reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Google Scholar
  24. [24]
    Guillemin, V., Moment Maps and Combinatorial Invariants of Hamiltonian T’ 1 -spaces, Progress in Mathematics 122 Birkhäuser, Boston, 1994. CrossRefGoogle Scholar
  25. [25]
    Guillemin, V., Sternberg, S., Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491–513. MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Guillemin, V., Sternberg, S., Birational equivalence in the symplectic category, Invent. Math. 97 (1989), 485-522. MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Guillemin, V., Sternberg, S., Symplectic Techniques in Physics, second edition, Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  28. [28]
    Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B., Toroidal Embeddings, I, Lecture Notes in Mathematics 339, Springer-Verlag, Berlin-New York, 1973.Google Scholar
  29. [29]
    Kirwan, F., Cohomology of Quotients in Symplectic and Algebraic GeometryMathematical Notes31, Princeton University Press, Princeton, 1984.Google Scholar
  30. [30]
    Kodaira, K., On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751–798.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Lerman, E., Symplectic cuts, Math. Res. Lett. 2 (1995), 247–258.MathSciNetzbMATHGoogle Scholar
  32. [32]
    Lerman, E., Meinrenken, E., Tolman, S., Woodward, C., Nonabelian convexity by symplectic cuts, Topology 37 (1998), 245–259.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Lerman, E., Tolman, S., Hamiltonian torus actions on symplectic orbifolds and tonic varieties, Trans. Amer. Math. Soc. 349 (1997), 4201–4230.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Marsden, J., Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), 121–130.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    McDuff, D., Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geom. 20 (1984), 267–277.MathSciNetzbMATHGoogle Scholar
  36. [36]
    McDuff, D., Salamon, D., Introduction to Symplectic Topology, Oxford Mathematical Monographs, Oxford University Press, New York, 1995.Google Scholar
  37. [37]
    Meyer, K., Symmetries and integrals in mechanics, Dynamical Systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), 259–272. Academic Press, New York, 1973.Google Scholar
  38. [38]
    Mikhalkin, G., Amoebas of algebraic varieties, survey for the Real Algebraic and Analytic Geometry Congress, Rennes, June 11–15, 2001, preprint available athttp://xxx.lanl.gov/abs/math AG/0108225.Google Scholar
  39. [39]
    Milnor, J., Morse Theory, based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies 51, Princeton University Press, Princeton, 1963.Google Scholar
  40. [40]
    Morse, M., The foundations of a theory in the calculus of variations in the large, Trans. Amer. Math. Soc. 30 (1928), 213–274.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    Oda, T., Convex Bodies and Algebraic Geometry - An Introduction to the Theory of Tonic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 15, Springer-Verlag, Berlin, 1988.Google Scholar
  42. [42]
    Satake, I., On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    Scott, P., The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401–487.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Shafarevich, I., Basic Algebraic Geometry, 1,Varieties in Projective Space, 2nd edition, translated from the 1988 russian edition and with notes by Miles Reid, Springer-Verlag, Berlin, 1994.Google Scholar
  45. [45]
    Souriau, J.-M., Structure des Systèmes Dynamiques, Maîtrises de Mathématiques, Dunod, Paris 1970.Google Scholar
  46. [46]
    Spivak, M., A Comprehensive Introduction to Differential Geometry, Vol. I,second edition, Publish or Perish, Inc., Wilmington, 1979.Google Scholar
  47. [47]
    Sturmfels, B., Gröbner Bases and Convex Polytopes, University Lecture Series 8, Amer. Math. Soc., Providence, 1996.Google Scholar
  48. [48]
    Weinstein, A., Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics 29 Amer. Math. Soc., Providence, 1977.Google Scholar
  49. [49]
    Wells, R.O., Differential Analysis on Complex Manifolds, second edition, Graduate Texts in Mathematics 65 Springer-Verlag, New York-Berlin, 1980.Google Scholar
  50. [50]
    Zariski, O., Samuel, P., Commutative Algebra, Vol. 1, with the cooperation of I.S. Cohen, Graduate Texts in Mathematics 28 Springer-Verlag, New YorkHeidelberg-Berlin, 1975.Google Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Michèle Audin
    • 1
  • Ana Cannas da Silva
    • 2
  • Eugene Lerman
    • 3
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et CNRSStrasbourg CedexFrance
  2. 2.Departamento de MatemáticaInstituto Superior TécnicoLisboaPortugal
  3. 3.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations