Skip to main content

Lagrangian and special Lagrangian submanifolds in Symplectic and Calabi-Yau manifolds

  • Chapter
Symplectic Geometry of Integrable Hamiltonian Systems

Abstract

In order to deform a Lagrangian submanifold in Cn, we must understand how a tubular neighbourhood looks like. We prove here that a Lagrangian submanifold has a neighbourhood which is diffeomorphic to a neighbourhood of the zero section in its cotangent bundle. To be precise and explicit, we need to define a symplectic structure on the cotangent bundles and more generally to say what a symplectic structure on a manifold is

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. V. I. Arnold—“A characteristic class entering in quantization conditions”Funct. Anal. Appl.1 (1965).

    Google Scholar 

  2. V. I. Arnold, Mathematical methods in classical mechanicsSpringer, 1978.

    Google Scholar 

  3. V. I. Arnold, “Lagrange and Legendre cobordisms I and II”Funct. Anal. Appl.14 (1980), p. 167–177 et 252–260.

    Google Scholar 

  4. V. I. Arnold et A. B. Givental“Symplectic geometry”, Dynamical systems, Encyclopcedia of Math. Sci., Springer(1985).

    Google Scholar 

  5. M. Audin—“Symplectic and almost complex manifolds”, in[7]p. 41–74.

    Google Scholar 

  6. M.Audin—Les systèmes hamiltoniens et leur intégrabilité,Cours Spécialisés, 8, Société Mathématique de France &EDP Sciences, 2001.

    Google Scholar 

  7. M. Audin et J. Lafontaine (éds.)Holomorphic curves in symplectic geometryProgress in Math., Birkhäuser, 1994.

    Book  MATH  Google Scholar 

  8. J. Bertin, J.-P. Demailly, L. Illusie et C. Peters —Introduction à la théorie de Hodge, Panoramas et Synthèses, 3, Société Mathématique de France, 1996.

    Google Scholar 

  9. R. Bryant“Some examples of special Lagrangian tori”, preprint(1998).

    Google Scholar 

  10. H. Cartan—Calcul différentielHermann, Paris, 1967.

    MATH  Google Scholar 

  11. S. Donaldson—“Moment maps and diffeomorphisms”Asian Journal of Math.(2000)àparaître.

    Google Scholar 

  12. D. B. Fuxs—“Maslov-Arnold characteristic classes”Soviet Math. Dokl.9 (1968), p. 96–99.

    Google Scholar 

  13. A. B. Givental—“Lagrangian imbeddings of surfaces and the open Whitney umbrella”Funktsional. Anal. i Prilozhen.20 (1986), no. 3, p. 35–41, 96.

    MathSciNet  Google Scholar 

  14. A. B. Givental—“Equivariant Gromov-Witten invariants”Internat. Math. Res. Notices13 (1996), p. 613–663.

    Article  MathSciNet  Google Scholar 

  15. P. A. Griffiths et J. Harris—Principles of algebraic geometry, Wiley, 1978.

    Google Scholar 

  16. M. Gromov—“Pseudo-holomorphic curves in symplectic manifolds”Invent. Math.82 (1985), p. 307–347.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Gromov—Partial differential relationsSpringer, Berlin, 1986.

    MATH  Google Scholar 

  18. R. Harvey et H. B. Lawson, JR.—“Calibrated geometries”Acta Math.148 (1982), p. 47–157.

    Article  MathSciNet  MATH  Google Scholar 

  19. N.J.Hitchin—“The moduli space of special Lagrangian submanifolds”Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1997), no. 3–4, p. 503–515 (1998), Dedicated to Ennio De Giorgi.

    MathSciNet  Google Scholar 

  20. N.J.Hitchin “Lectures on special Lagrangian submanifolds”preprint(1999).

    Google Scholar 

  21. V. M. Kharlamov—“On the classification of nonsingular surfaces of degree 4 in RP3with respect to rigid isotopies”Funktsional. Anal. i Prilozhen.18 (1984), no. 1, p. 49–56.

    Article  MathSciNet  Google Scholar 

  22. J. Lafontaine—Introduction aux variétés différentielles, Presses universitaires de Grenoble, 1996.

    Google Scholar 

  23. J. A. Lees—“On the classification of Lagrange immersions”Duke Math. J.43 (1976), no. 2, p. 217–224.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Mcduff et D. Salamon—Introduction to symplectic topologyThe Clarendon Press Oxford University Press, New York, 1995, Oxford Science Publications.

    MATH  Google Scholar 

  25. R. C. Mclean—“Deformations of calibrated submanifolds”Comm. Anal. Geom.6 (1998), no. 4, p. 705–747.

    MathSciNet  MATH  Google Scholar 

  26. J. Milnor—Morse theory, Princeton University Press, 1963.

    Google Scholar 

  27. K. Mohnke—preprint (2001).

    Google Scholar 

  28. J. Moser—“On the volume elements on a manifold”Trans. Amer. Math. Soc.120 (1965), p. 286–294.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Rosenberg et D. Hoffman—Surfaces minimales et solutions de problèmes variationnelsSociété Mathématique de France, Paris, 1993.

    MATH  Google Scholar 

  30. A. Cannas DA Silva —Lectures on symplectic geometryLecture Notes in ematics, Springer, 2001.

    Google Scholar 

  31. M. Stenzel—“Ricci-flat metrics on the complexification of a compact rank one symmetric space”Manuscripta Math.80 (1993), p. 151–163.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Strominger, S. T. Yau et E. Zaslow—“Mirror symmetry isT-duality”,Nuclear Phys.B 479 1996 p. 243–259.

    MathSciNet  Google Scholar 

  33. C. Voisin—Symétrie miroirPanoramas et Synthèses,2Société Mathématique de France,1996English translation:Mirror symmetrySMF/AMS Texts and Monographs 1,1999.

    Google Scholar 

  34. A. Weinstein- Lectures on symplectic manifoldsCBMS Regional Conference Series in Mathematics,29Amer. Math. Soc.,1977.

    Google Scholar 

  35. S. T.Yau—“On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I”Comm. Pure and Appl. Math. 31 (1978), p. 339–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Audin, M., da Silva, A.C., Lerman, E. (2003). Lagrangian and special Lagrangian submanifolds in Symplectic and Calabi-Yau manifolds. In: Symplectic Geometry of Integrable Hamiltonian Systems. Advanced Courses in Mathematics CRM Barcelona. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8071-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8071-8_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2167-3

  • Online ISBN: 978-3-0348-8071-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics