Skip to main content

Asymptotic Distributions of Trimmed Wasserstein Distances Between the True and the Empirical Distribution Function

  • Conference paper
Stochastic Inequalities and Applications

Part of the book series: Progress in Probability ((PRPR,volume 56))

Abstract

If the distribution function F has a finite mean, then the Wasserstein distance \(d({{F}_{n}},F) = \smallint _{{ - \infty }}^{\infty }|{{F}_{n}}(x) - F(x)|dx\) between F and the corresponding empirical distribution function F n , based on a sample of size n converges almost surely to zero as n →∞. In [6] del Barrio, Giné and Matrán have provided an exhaustive study of the distributional limit theorems associated with this law of large numbers. Nothing can be said about d(F n , F) = ∞ almost surely for all n ≥ 1 if F has no finite mean. In the present paper we modify d(F n , F) into a finite quantity for all F by an adaptation of the notion of trimming from statistics, and study the asymptotic distributions of these trimmed Wasserstein distances for appropriate classes of distribution functions F via weighted approximation results for uniform empirical processes.

This work was completed with the support of a NATO Grant.

This work was completed with the support of a NATO Grant, NSA Grant MDA904-02-1-0034 and NSF Grant DMS-0203865.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Csörgö, S. Csörgö, L. Horvath and D.M. Mason, Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function. Ann. Probab. 14 (1986), 86–118.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Csörgő and L. Horvath, Weighted Approximations in Probability and Statistics. Wiley, 1993.

    Google Scholar 

  3. S. Csörgő, E. Haeusler and D.M. Mason, The Asymptotic Distribution of Trimmed Sums. Ann. Probab. 16 (1988), 672–699.

    Article  MathSciNet  Google Scholar 

  4. S. Csörgő, E. Haeusler and D.M. Mason, A Probabilistic Approach to the Asymptotic Distribution of Sums of Independent, Identically Distributed Random Variables. Adv. Appl. Math. 9 (1988), 259–333.

    Article  Google Scholar 

  5. S. Csörgő, L. Horváth and D.M. Mason, What Portion of the Sample Makes a Partial Sum Asymptotically Stable or Normal ? Probab. Theory Related Fields 72 (1986), 1–16.

    Article  Google Scholar 

  6. E. del Barrio, E. Giné and C. Matrán, Central Limit Theorems for the Wasserstein Distance Between the Empirical and the True Distributions. Ann. Probab. 27 (1999), 1009–1071. Correction note, Ann. Probab. 31 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. M.G. Hahn, D.M. Mason and D.C. Weiner (Eds.), Sums, Trimmed Sums and Extremes. Birkhäuser, 1991.

    MATH  Google Scholar 

  8. E. Hewitt and K. Stromberg, Real and Abstract Analysis. Springer-Verlag, 1969.

    MATH  Google Scholar 

  9. D.M. Mason, An exponential inequality for a weighted approximation to the uniform empirical process with applications. In: State of the Art in Statistics and Probability Theory, Festschrift for Willem R. Van Zwet. (M. de Gunst, C. Klaassen, A. van der Vaart, Eds.), I.M.S. Lect. Notes in Math. Statist. 36, pp. 477–498, 2001.

    Chapter  Google Scholar 

  10. A. Munk and C. Czado, Nonparametric validation of similar distributions and assessment of goodness of fit. J. R. Stat. Soc., Ser. B, Stat. Methodol. 60 (1998), 223–241.

    Article  MathSciNet  MATH  Google Scholar 

  11. G.R. Shorack, Probability for Statisticians. Springer-Verlag, 2000.

    MATH  Google Scholar 

  12. G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, 1986.

    MATH  Google Scholar 

  13. J.A. Wellner and R.T. Smythe, Computing the Covariance of Two Brownian Area Integrals. Statist. Neerl. 56 (2002), 101–109.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Haeusler, E., Mason, D.M. (2003). Asymptotic Distributions of Trimmed Wasserstein Distances Between the True and the Empirical Distribution Function. In: Giné, E., Houdré, C., Nualart, D. (eds) Stochastic Inequalities and Applications. Progress in Probability, vol 56. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8069-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8069-5_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9428-9

  • Online ISBN: 978-3-0348-8069-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics