Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 146))

Abstract

We consider time-dependent electromagnetic fields with negligible propagation effect. These fields are called quasistatic. While the case with negligible displacement current (mainly inductive effects; magneto-quasistatics) is usually treated in classical theory, the case of fields free of eddy currents (mainly capacitive; electro-quasistatics) is still not too common Yet, the electro-quasistatic model is applicable in many different constellations, especially for microelectronic devices, too.

In this paper, we derive the electro-quasistatic (EQS) equations and deal with their discretization using the Finite Integration Technique. We treat the time-harmonic and the transient equations as well as anisotropic materials. For some application from high-voltage engineering we study Krylov-subspace methods with algebraic multigrid preconditioning. As special application, neuronal microelectrode arrays are chosen affording the coupling of the transient EQS equations with the Hodgkin-Huxley equations in order to simulate the so-called action potential of the nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Haus, J.R. Melcher, Electromagnetic Fields and Energy, Prentice-Hall. Inc., 1989. See also: http://web.mitedu/6.013_book/www/

    Google Scholar 

  2. H.K. Dirks, Quasi-Stationary Fields for Microelectronic Applications, Electrical Engineering, 79 (1996): 145–155.

    Article  Google Scholar 

  3. L. Borcea, Nonlinear Multigrid Algorithm for Imaging Electrical Conductivity and Permittivity at Low Frequency, Inverse Problems, 17 (2001): 329–359.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Weiland, Eine Methode zur Lösung der Maxwellschen Gleichungen für sechskomponentige Felder auf diskreter Basis, AEÜ, 31 (1977): 116–120.

    Google Scholar 

  5. T. Weiland, Time Domain Electromagnetic Field Computation with Finite Difference Methods, JNM (Wiley), 9 (1996): 295–319.

    Google Scholar 

  6. K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, IEEE-AP, 14 (1966): 302–307.

    MATH  Google Scholar 

  7. U. van Rienen, T. Weiland, Triangular Discretization Method for the Evaluation of RF-Fields in Cylindrically Symmetric Cavities, IEEE-T.Mag., 21 (1985): 2317–2320.

    Article  Google Scholar 

  8. U. van Rienen, Frequency Domain Analysis of Waveguides and Resonators with FIT on Non-Orthogonal Triangular Grids, PIER, 32 (2001), Special Vol. Geometrical Methods for Computational Electromagnetics: 357–381.

    Article  Google Scholar 

  9. U. van Rienen, Numerical Methods in Computational Electrodynamics - Linear Systems in Practical Applications, Springer-LNCSE, Vol. 12,2000.

    Google Scholar 

  10. B. Krietenstein, P.Thoma, R. Schuhmann, T. Weiland, Facing the Big Challenge of High Precision Field Computation, Proc. 19th LINAC Conf., Chicago, 1998: 860–862.

    Google Scholar 

  11. M. Clemens and T. Weiland, Magnetic Field Simulation Using Conformal FIT Formulations, IEEE-T.Mag., 38 (2002): 389–392.

    Article  Google Scholar 

  12. R. Schuhmann, P. Schmidt, T. Weiland, A New Whitney-Based Material Operator for the Finite-Integration Technique on Triangular Grids, IEEE-T.Mag., 38 (2002): 409–412.

    Article  Google Scholar 

  13. F. Sachse et al., Comparison of solutions to the forward problem in electrophysiology with homogeneous, heterogeneous and anisotropic impedance model, Biomedizinische Technik, 42 (1997): 277–280.

    Article  Google Scholar 

  14. U. van Rienen, M. Clemens, T. Weiland, Simulation of Low-Frequency Fields on High-Voltage Insulators with Light Contaminations, IEEE-T.Mag., 32 (1996): 816–819.

    Article  Google Scholar 

  15. U. Schreiber, J. Flehr, V. Motrescu, U. van Rienen, The Electro-Quasistatic Model in Different Applications, to appear in Proc. 4th Int. Conf. on Scientific Computing in Electrical Engineering, Springer-LNCSE.

    Google Scholar 

  16. H. Krüger, Zur numerischen Berechnung transienter elektromagnetischer Felder in gyrotropen Materialien, PhD thesis, TU Darmstadt 2000.

    Google Scholar 

  17. S. Reitzinger, U. Schreiber, U. van Rienen, Algebraic Multigrid Methods for Complex Symmetric Matrices and Applications, Journal for Computational and Applied Mathematics, to appear.

    Google Scholar 

  18. D.A. Stenger, T.M. McKenna (Eds.), Enabling Technologies for Cultured Neural Networks, Academic Press, 1994.

    Google Scholar 

  19. G.W. Gross, Internal Dynamics of Randomized Mammalian Neuronal Networks in Culture, 277–317 in [18].

    Google Scholar 

  20. J. Keener, J. Sneyd, Mathematical Physiology, Springer, 2nd ed., 2001.

    Google Scholar 

  21. http://www.chscene.ch/nervenzelle/data/index.htm (media gallery).

  22. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiology, 117 (1952): 500–544.

    Google Scholar 

  23. MATLAB®, The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760–2098, USA.

    Google Scholar 

  24. MAFIA 4, CST — Computer Simulation Technology, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.

    Google Scholar 

  25. M. Kneuer, Diploma Thesis, TU Darmstadt, 2000.

    Google Scholar 

  26. M. Clemens, R. Schuhmann, U. van Rienen, T. Weiland, Modern Krylov Subspace Methods in Electromagnetic Field Computation Using the Finite Integration Theorie, ACES J., 11 (1996): 70–84.

    Google Scholar 

  27. M. Clemens, T. Weiland, U. van Rienen, Comparison of Krylov-Type Methods for Complex Linear Systems Applied to High-Voltage Problems, IEEE-T.Mag., 34 (1998): 3335–3338.

    Article  Google Scholar 

  28. A. Bunse-Gerstner, R. Stöver, On a Conjugate Gradient-Type Method for Solving Complex Symmetric Linear Systems, Lin.Alg.Appl., 287 (199): 105–123.

    Google Scholar 

  29. S. Reitzinger, PEBBLES — User’s Guide, 1999, http://www.sfb013.uni-linz.ac.at.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

van Rienen, U., Flehr, J., Schreiber, U., Motrescu, V. (2003). Modeling and Simulation of Electro-Quasistatic Fields. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation, and Optimization of Integrated Circuits. ISNM International Series of Numerical Mathematics, vol 146. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8065-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8065-7_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9426-5

  • Online ISBN: 978-3-0348-8065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics