Skip to main content

Small Deviation Estimates for Some Additive Processes

  • Conference paper
High Dimensional Probability III

Part of the book series: Progress in Probability ((PRPR,volume 55))

Abstract

We study the small deviation probabilities for real valued additive processes. This naturally leads to the small deviation for the corresponding range process. Our general results can be applied to a wide range of additive processes generated from fractional Brownian motions, stable processes, Brownian sheets, etc. As an application, limit inf type LIL are proved for additive stable processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, X. Kuelbs, J. and Li, W.V.,(2000), A functional LIL for symmetric stable processes. Ann. Probab. 28, 258–276.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, X. and Li, W.V. (2002), Large and moderate deviations for intersection local times, preprint.

    Google Scholar 

  3. Dalang, R. and Mountford, T (2002). Non-independence of excursions of the Brownian sheet and of additive Brownian motion, to appear in Trans. Amer. Math. Soc.

    Google Scholar 

  4. Dalang, R. and Walsh, J. (1993a), Geography of the level sets of the Brownian sheet, Prob. Th. Rel. Fields, 96,153–176.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dalang, R. and Walsh, J.(1993b), The structure of a Brownian bubble, Prob. Th. Rel. Fields, 96,475–501.

    Article  MathSciNet  MATH  Google Scholar 

  6. Donsker, M.D. and Varadhan, S.R.S. (1977). On laws of the iterated logarithm for local times. Comm. Pure. Appl. Math. 30, 707–753.

    Article  MathSciNet  MATH  Google Scholar 

  7. Feller, W. (1951), The asymptotic distribution of the range of sums of independent random variables, Ann. Math. Stat. 22, 427–432.

    Article  MathSciNet  MATH  Google Scholar 

  8. Khoshnevisan, D. and Xiao, Y. (2002), Level sets of additive L’evy process, Ann. Prob. (to appear).

    Google Scholar 

  9. Khoshnevisan, D. Xiao, Y. and Zhong, Y., (2001). Local times of additive LĂ©vy processes, I: regularity. (preprint).

    Google Scholar 

  10. Khoshnevisan, D. Xiao, Y. and Zhong, Y., (2001). Measuring the range of an additive LĂ©vy process. Ann. Probab. (to appear).

    Google Scholar 

  11. Kuelbs, J. (1981), When is the cluster set of Sn/an empty? Ann. Probab. 9 377–394.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuelbs, J. and Li, W.V., (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133–157.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, W.V. (2001), Small ball probabilities for Gaussian Markov processes under the L0-norm, Stoch. Processes and Their Appl.,92, 87–102.

    Article  MATH  Google Scholar 

  14. Li, W.V. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27, 1556–1578.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, W.V. and Linde, W. (2002), Recent developments on small ball probabilities for stable processes. preprint.

    Google Scholar 

  16. Li, W.V. and Shao, Q.M. (2001). Gaussian Processes: Inequalities, Small Ball Probabilities and Applications. In: Stochastic Processes: Theory and Methods. Handbook of Statistics, Vol. 19 (2001), Edited by C.R. Rao and D. Shanbhag, 533–597.

    Chapter  Google Scholar 

  17. Mogul’skii, A.A. (1974). Small deviations in a space of trajectories. Theor. Probab. Appl. 19, 726–736.

    Article  MathSciNet  Google Scholar 

  18. Samorodnitsky, G. (1998). Lower tails of self-similar stable processes. Bernoulli 4, 127–142.

    Article  MathSciNet  MATH  Google Scholar 

  19. Shao, Q.M. (1999). A Gaussian correlation inequality and its applications to the existence of small ball constant, preprint.

    Google Scholar 

  20. Taylor, S.J. (1967). Sample path properties of a transient stable process. J. Math. Mech. 16, 1229–1246.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Chen, X., Li, W.V. (2003). Small Deviation Estimates for Some Additive Processes. In: Hoffmann-Jørgensen, J., Wellner, J.A., Marcus, M.B. (eds) High Dimensional Probability III. Progress in Probability, vol 55. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8059-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8059-6_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9423-4

  • Online ISBN: 978-3-0348-8059-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics