Skip to main content

Toll-like receptors and the cardiovascular system

  • Chapter
Book cover Inflammation and Cardiac Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 116 Accesses

Abstract

Most micro-organisms that are encountered daily by a healthy individual are detected initially by defense mechanisms that are not antigen-specific, a response that is mediated by the innate immune system. In contrast to the adaptive immunity, where specific antigen receptors are generated by somatic hypermutation and selection, the innate immune systems uses germline encoded proteins that recognize specific patterns shared by groups of pathogens, but not the host. These receptors are called “pattern recognition receptors” (“PRRs”) and recognize largely invariant “pathogen-associated molecular patterns” (“PAMPs”), as for example lipopolysaccharides of bacteria or double-stranded RNA of viruses [1]. This review will focus on the toll-like receptor (TLR) family, a class of pattern recognition receptors of major importance [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1: 1–13

    Article  Google Scholar 

  2. Medzhitov R (2001) Toll-like receptors and innate immunity. Nature Rev Immunol 1: 135–145

    Article  CAS  Google Scholar 

  3. Chuang T, Ulevitch RJ (2001) Identification of hTLR10: A novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518: 157–161

    Article  PubMed  CAS  Google Scholar 

  4. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    Article  PubMed  CAS  Google Scholar 

  5. Du X, Poltorak, A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors: Gene structure, expression, and evolution. Eur Cytokine Netw 11: 362–371

    PubMed  CAS  Google Scholar 

  6. Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S (1999) TLR6: A novel member of an expanding toll-like receptor family. Gene 231: 59–65

    Article  PubMed  CAS  Google Scholar 

  7. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to drosophila toll. Proc Natl Acad Sci USA 95: 588–593

    Article  PubMed  CAS  Google Scholar 

  8. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680

    Article  PubMed  CAS  Google Scholar 

  9. Means TK, Golenbock DT, Fenton MJ (2000) Structure and function of toll-like receptor proteins Life Sci 68: 241–258

    Article  PubMed  CAS  Google Scholar 

  10. Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589: 1–13

    Article  PubMed  CAS  Google Scholar 

  11. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451

    Article  PubMed  CAS  Google Scholar 

  12. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF, Akira S (2000) Cutting edge: Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 164: 554–557

    PubMed  CAS  Google Scholar 

  13. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by co-operation between toll-like receptors. Proc Natl Acad Sci USA 97: 13766–13771

    Article  PubMed  CAS  Google Scholar 

  14. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by toll-like receptor 6. Int Immunol 13: 933–940

    Article  PubMed  CAS  Google Scholar 

  15. Wyllie DH, Kiss-Toth E, Visintin A, Smith SC, Boussouf S, Segal DM, Duff GW, Dower SK (2000) Evidence for an accessory protein function for toll-like receptor 1 in anti-bacterial responses. J Immunol 165: 7125–7132

    PubMed  CAS  Google Scholar 

  16. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388: 394–397

    Article  PubMed  CAS  Google Scholar 

  17. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189: 1777–1782

    Article  PubMed  CAS  Google Scholar 

  18. Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C31–1/HeJ and C57BL/10ScCr mice: Mutations in tlr4 gene. Science 282: 2085–2088

    Article  PubMed  CAS  Google Scholar 

  19. Qureshi ST, Larivire L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in toll-like receptor 4 (T1r4). J Exp Med 189: 615–625

    Article  PubMed  CAS  Google Scholar 

  20. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J Immunol 162: 3749–3752

    PubMed  CAS  Google Scholar 

  21. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharideinduced cellular signaling. Nature 395: 284–288

    Article  PubMed  CAS  Google Scholar 

  22. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165: 618–622

    PubMed  CAS  Google Scholar 

  23. Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, Nishijima M (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by taxol. J Biol Chem 275: 2251–2254

    Article  PubMed  CAS  Google Scholar 

  24. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276: 31332–31339

    Article  PubMed  CAS  Google Scholar 

  25. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164: 558–561

    PubMed  CAS  Google Scholar 

  26. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates toll-like receptor 4. J Biol Chem 276: 10229–10233

    Article  PubMed  CAS  Google Scholar 

  27. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, MarshakRothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and toll-like receptors. Nature 416: 603–607

    Article  PubMed  CAS  Google Scholar 

  28. Re F, Strominger JL (2001) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 276: 37692–37699

    Article  PubMed  CAS  Google Scholar 

  29. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: Recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J Immunol 163: 1–5

    PubMed  CAS  Google Scholar 

  30. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999) The toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811–815

    Article  PubMed  CAS  Google Scholar 

  31. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycanand lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274: 17406–17409

    Article  PubMed  CAS  Google Scholar 

  32. Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W, Zahringer U, Hartung T, Gobel UB, Schumann RR (2001) Toll-like receptor-2 mediates treponema glycolipid and lipoteichoic acid-induced NF-kappa-B translocation. J Biol Chem 276:22041–22047

    Article  PubMed  CAS  Google Scholar 

  33. Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001) Cutting edge: Functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166: 15–19

    PubMed  CAS  Google Scholar 

  34. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf, JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736–739

    Article  PubMed  CAS  Google Scholar 

  35. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST et al (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285: 732–736

    Article  PubMed  CAS  Google Scholar 

  36. Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM, Weis JJ (1999) Cutting edge: Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2 [In Process Citation]. J Immunol 163: 2382–2386

    PubMed  CAS  Google Scholar 

  37. Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD et al (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274: 33419–33425

    Article  PubMed  CAS  Google Scholar 

  38. Flo TH, Halaas O, Lien E, Ryan L, Teti G, Golenbock DT, Sundan A, Espevik T (2000) Human toll-like receptor 2 mediates monocyte activation by listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol 164: 2064–2069

    PubMed  CAS  Google Scholar 

  39. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999) Human toll-like receptors mediate cellular activation by mycobacterium tuberculosis. J Immunol 163: 3920–3927

    PubMed  CAS  Google Scholar 

  40. Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ (1999) The CD14 Ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors. J Immunol 163: 6748–6755

    PubMed  CAS  Google Scholar 

  41. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ, Hayashi F, Ozinsky A et al (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2: 346–352

    Article  PubMed  CAS  Google Scholar 

  42. Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, Qureshi N, Michalek SM, Vogel SN (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69: 1477–1482

    Article  PubMed  CAS  Google Scholar 

  43. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT (2001) Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167: 416–423

    PubMed  CAS  Google Scholar 

  44. Jeannin P, Renno T, Goetsch L, Miconnet I, Aubry JP, Delneste Y, Herbault N, Baussant T, Magistrelli G, Soulas C et al (2000) OmpA targets dendritic cells, induces their maturation and delivers antigen into the MHC Class I presentation pathway. Nat Immunol 1: 502–509

    Article  PubMed  CAS  Google Scholar 

  45. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappa-B by toll-like receptor 3. Nature 413: 732–738

    Article  PubMed  CAS  Google Scholar 

  46. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1: 398–401

    Article  PubMed  CAS  Google Scholar 

  47. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature 410: 1099–1103

    Article  PubMed  CAS  Google Scholar 

  48. Medzhitov R, Janeway CA Jr (1998) An ancient system of host defense. Curr Opin Immunol 10: 12–15

    Article  PubMed  CAS  Google Scholar 

  49. Kopp EB, Medzhitov R (1999) The toll-receptor family and control of innate immunity. Curr Opin Immunol 11: 13–18

    Article  PubMed  CAS  Google Scholar 

  50. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2: 346–351

    Article  PubMed  CAS  Google Scholar 

  51. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadien A, Chen C, Ghosh S, Janeway CA Jr. (1998) MyD88 is an adaptor protein in the htoll/IL-1 receptor family signaling pathways. Mol Cell 2: 253–258

    Article  PubMed  CAS  Google Scholar 

  52. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) To114 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104: 271–280

    Article  PubMed  CAS  Google Scholar 

  53. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88deficient mice to endotoxin. Immunity 11: 115–122

    Article  PubMed  CAS  Google Scholar 

  54. Horng T, Barton GM, Medzhitov R (2001) TIRAP: An adapter molecule in the toll signaling pathway. Nat Immunol 2: 835–841

    Article  PubMed  CAS  Google Scholar 

  55. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte M.T et al (2001) Mal (MyD88-adapter-like) is required for toll-like receptor-4 signal transduction. Nature 413: 78–83

    Article  PubMed  CAS  Google Scholar 

  56. Underhill DM, Ozinsky A (2002) Toll-like receptors: Key mediators of microbe detection. Curr Opin Immunol 14: 103–110

    Article  PubMed  CAS  Google Scholar 

  57. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 105: 1158–1161

    PubMed  CAS  Google Scholar 

  58. Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J et al (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and up-regulated by oxidized LDL. Circulation 104: 3103–3108

    Article  PubMed  CAS  Google Scholar 

  59. Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear fac-tor-kappa-B by oxidative stress in cardiac myocytes. J Biol Chem 276: 5197–5203

    Article  PubMed  CAS  Google Scholar 

  60. Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann DL, Vallejo JG (2001) In vivo expression of pro-inflammatory mediators in the adult heart after endotoxin administration: The role of toll-like receptor-4. J Infect Dis 183: 1617–1624

    Article  PubMed  CAS  Google Scholar 

  61. Nemoto S, Vallejo JG, Knuefermann P, Misra A, Defreitas G, Carabello BA, Mann DL (2002) Escherichia coli LPS-induced LV dysfunction: Role of toll-like receptor-4 in the adult heart. Am J Physiol Heart Circ Physiol 282: H2316–2323

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Frantz, S., Kelly, R.A., Bourcier, T. (2003). Toll-like receptors and the cardiovascular system. In: Feuerstein, G.Z., Libby, P., Mann, D.L. (eds) Inflammation and Cardiac Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8047-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8047-3_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9419-7

  • Online ISBN: 978-3-0348-8047-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics