Skip to main content

Heat shock proteins in immune response

  • Chapter
Heat Shock Proteins and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 126 Accesses

Abstract

The connection between HSPs and tumor rejection antigens became apparent through tumor rejection studies in mice and rats. In search for individually distinct tumor rejection antigens, tumor cell lysates were fractionated biochemically and each fraction was tested for its ability to immunize in vivo against the tumor. The tumor rejection antigens thus found were mostly HSPs (Tab. 1). Preparations of HSPs, e.g., HSP70, HSP90, gp96 and calreticulin (CRT) from Meth A fibrosarcoma (tumor induced in BALB/c mice by methylcholanthrene) when used to immunize BALB/c mice, rendered the mice immune to subsequent challenge with live Meth A tumor cells in a classical tumor rejection assay [1-3]. However, immunization of mice with HSP preparations from normal tissues [2] or from antigenically-distinct tumor cells [1, 4] did not protect the animals against tumor challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srivastava PK, DeLeo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83: 3407–3411

    Article  PubMed  CAS  Google Scholar 

  2. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178: 1391–1396

    Article  PubMed  CAS  Google Scholar 

  3. Basu S, Srivastava PK (1999).Calreticulin, a peptide-binding chaperone of the endo-plasmic reticulum, elicits tumor-and peptide-specific immunity. J Exp Med 189: 797–802

    Article  PubMed  CAS  Google Scholar 

  4. Srivastava PK, Das MR (1984) The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int J Cancer 33: 417–419

    Article  PubMed  CAS  Google Scholar 

  5. Srivastava PK, Heike M (1991) Tumor-specific immunogenicity of stress-induced proteins: Convergence of two evolutionary pathways of antigen presentation? Semin Immunol 3: 57–64

    CAS  Google Scholar 

  6. Srivastava PK, Maki RG (1991) Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol 167: 109–123

    Article  PubMed  CAS  Google Scholar 

  7. Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28: 1016–1021

    Article  PubMed  CAS  Google Scholar 

  8. Li Z, Srivastava PK (1993) Tumor rejection antigen gp96/grp94 is an ATPase: Implications for protein folding and antigen presentation. EMBO J 12: 3143–3151

    PubMed  CAS  Google Scholar 

  9. Nieland TJF, Tan MCA, Monnee-van Muijen M, Koning F, Kruisbeek AM, Van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein gp96/grp94. Proc Natl Acad Sci USA 93: 6135–6139

    Article  PubMed  CAS  Google Scholar 

  10. Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, Hizuta A, Tanaka N, Srivastava PK, Nakayama E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162: 1303–1309

    PubMed  CAS  Google Scholar 

  11. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614

    Article  PubMed  CAS  Google Scholar 

  12. Marusina K, Reid G, Gabathuler R, Jefferies W, Monaco JJ (1997) Novel peptide-binding proteins and peptide transport in normal and TAP-deficient microsomes. Biochemistry 36: 856–863

    Article  PubMed  CAS  Google Scholar 

  13. Lammert E, Arnold D, Nijenhuis M, Momburg F, Hammerling GJ, Brunner J, Stevanovic S, Rammensee HG, Schild H (1997) The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur J Immunol 27: 923–927

    Article  PubMed  CAS  Google Scholar 

  14. Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27: 2441–2449

    Article  PubMed  CAS  Google Scholar 

  15. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278: 117–120

    Article  PubMed  CAS  Google Scholar 

  16. Arnold D, Faath S, Rammensee H, Schild H (1995) Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 172: 885–889

    Article  Google Scholar 

  17. Arnold D, Wahl C, Faath S, Rammensee H-G, Schild H (1997) Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med 176: 461–466

    Article  Google Scholar 

  18. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269: 1585–1588

    Article  PubMed  CAS  Google Scholar 

  19. Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 176: 1315–1319

    Article  Google Scholar 

  20. Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH (2001) gp96-Peptide vaccination of mice against intracellular bacteria. Infect Immun 69: 4164–4167

    Article  PubMed  CAS  Google Scholar 

  21. Meng SD, Gao T, Gao GF, Tien P (2001) HBV-specific peptide associated with heat-shock protein gp96. Lancet 17: 528–529

    Article  Google Scholar 

  22. Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G (2001) Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 61: 222–227

    PubMed  CAS  Google Scholar 

  23. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK et al (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169: 5424–5432

    PubMed  CAS  Google Scholar 

  24. Udono H, Levey D, Srivastava PK (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: Tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA 91: 3077–3081

    Article  PubMed  CAS  Google Scholar 

  25. Srivastava PK, Udono H, Blachere N, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39: 93–98

    Article  PubMed  CAS  Google Scholar 

  26. Wassenberg JJ, Dezfulian C, Nicchitta CV (1999) Receptor mediated and fluid phase pathways for internalization of the ER Hsp90 chaperone GRP94 in murine macrophages. J Cell Sci 112: 2167–2175

    PubMed  CAS  Google Scholar 

  27. Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757–3760

    PubMed  CAS  Google Scholar 

  28. Binder RJ, Harris M, Menoret A, Srivastava PK (2000) Saturation, competition and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11 b+ cells. J Immunol 165: 2582–2587

    PubMed  CAS  Google Scholar 

  29. Binder R, Han DK, Srivastava PK (2000). CD91: A receptor for heat shock protein gp96. Nature Immunol 2: 151–155

    Article  Google Scholar 

  30. Becker T, Hartl FU, Wieland F (2002) CD40: An extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285

    Article  PubMed  CAS  Google Scholar 

  31. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17: 353–362

    Article  PubMed  CAS  Google Scholar 

  32. Matsutake T, Srivastava PK. (2000) CD91 is involved in MHC Class II Presentation of gp96 - chaperoned peptides. Cell Stress and Chaperones 5: 378

    Google Scholar 

  33. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14: 303–313

    Article  PubMed  CAS  Google Scholar 

  34. Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D et al (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191: 1965–1974

    Article  PubMed  CAS  Google Scholar 

  35. Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN (2000) Receptor-mediated uptake of antigen/heat shock protein complex results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191: 1957–1964

    Article  PubMed  CAS  Google Scholar 

  36. Binder RJ, Anderson KM, Basu S, Srivastava PK (2000) Cutting edge: Heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165: 6029–6035

    PubMed  CAS  Google Scholar 

  37. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539–1546

    Article  PubMed  CAS  Google Scholar 

  38. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435–442

    Article  PubMed  CAS  Google Scholar 

  39. Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate release of nitric oxide by antigen presenting cells. J Immunol 168: 2997–3003

    PubMed  CAS  Google Scholar 

  40. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30: 2211–2215

    PubMed  CAS  Google Scholar 

  41. Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 167: 4844–4852

    PubMed  CAS  Google Scholar 

  42. Su HP, Nakada-Tsukui K, Tosello-Trampont AC, Li Y, Bu G, Henson PM, Ravichandran K (2001) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells, with CED-1 and CD91/LRP. J Biol Chem 277: 11772–11779

    Article  PubMed  Google Scholar 

  43. Misra UK, Pizzo SV (2001) Induction of cyclooxygenase-2 synthesis by ligation of the macrophage alpha (2)-macroglobulin signalling receptor. Cell Signal 13: 801–808

    Article  PubMed  CAS  Google Scholar 

  44. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164: 558–561

    PubMed  CAS  Google Scholar 

  45. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276: 31332–31339

    Article  PubMed  CAS  Google Scholar 

  46. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. (2002) Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028–15034

    Article  PubMed  CAS  Google Scholar 

  47. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277: 20847–20853

    Article  PubMed  CAS  Google Scholar 

  48. Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169: 2422–2429

    PubMed  CAS  Google Scholar 

  49. Panjwani NN, Popova L, Febbraio F, Srivastava PK (2000) The CD36 scavenger receptor as a receptor for gp96. Cell Stress and Chaperones 5: 391

    Google Scholar 

  50. Gao B, Tsan MF (2002 Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 278: 174–179

    Article  PubMed  Google Scholar 

  51. Ullrich, SJ, Robinson EA, Law LW, Willingham M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci USA 83: 3118–3125

    Article  Google Scholar 

  52. Palladino MA, Srivastava PK, Oettgen HF, DeLeo AB (1987) Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas. Cancer Res 47: 5074–5079

    PubMed  Google Scholar 

  53. Nicchitta CV (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10: 103–109

    Article  PubMed  CAS  Google Scholar 

  54. Janetzki S, Blachere NE, Srivastava PK (1998) Generation of tumor-specific cytotoxic T lymphocytes and memory T cells by immunization with tumor-derived heat shock protein gp96. J Immunother 21: 269–276

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Basu, S., Srivastava, P. (2003). Heat shock proteins in immune response. In: van Eden, W. (eds) Heat Shock Proteins and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8028-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8028-2_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9410-4

  • Online ISBN: 978-3-0348-8028-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics