Skip to main content

Some Remarks for Stable-like Jump Processes on Fractals

  • Conference paper
Fractals in Graz 2001

Part of the book series: Trends in Mathematics ((TM))

Abstract

We summarize recent work on non-local Dirichlet forms on fractals whose corresponding processes are stable-like jump processes. Especially, we introduce three natural non-local Dirichlet forms on d-sets and prove that these forms are equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Adams and L.I. Hedberg, Function spaces and potential theory, (1996), Springer, Berlin-Heidelberg.

    Google Scholar 

  2. M.T. Barlow, Diffusions on fractals, Lectures in Probability Theory and Statistics: Ecole d’été de probabilités de Saint-Flour XXV, Lect. Notes Math., 1690 (1998), Springer, New York.

    Google Scholar 

  3. M.T. Barlow and T. Kumagai, Transition density asymptotics for some diffusion processes with multi-fractal structures, Electron. J. Probab., 6 (2001), 1–23.

    Article  MathSciNet  Google Scholar 

  4. R.F. Bass and D.A. Levin, Transition probabilities for symmetric jump processes, Preprint (2001).

    Google Scholar 

  5. G. Ben Arous and T. Kumagai, Large deviations for Brownian motion on the Sierpinski gasket, Stochastic Process. Appl., 85 (2000), 225–235.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bertoin, LĂ©vy processes, (1996), Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  7. K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes, Preprint (2001).

    Google Scholar 

  8. E.B. Davies, Heat kernels and spectral theory, (1989), Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  9. W. Farkas and N. Jacob, Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, Math. Nachr., 224 (2001), 75–104.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Fukushima, Personal communications (2001).

    Google Scholar 

  11. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet forms and symmetric Markov processes, (1994), de Gruyter, Berlin.

    Book  MATH  Google Scholar 

  12. M. Fukushima and T. Uemura, On Sobolev imbeddings and capacities for contractive Besov spaces over d-sets, Preprint (2001).

    Google Scholar 

  13. P. Grabner and W. Woess, Functional iterations and periodic oscillations for simple random walk on the Sierpiriski graph, Stochastic Process. Appl., 69 (1997), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Ito and H.P. McKean Jr., Diffusion processes and thier sample paths (Second printing), (1974), Springer, Berlin-Heidelberg.

    Google Scholar 

  15. N. Jacob and R.L. Schilling, Some Dirichlet spaces obtained by subordinate reflected diffusions, Rev. Mat. Iberoamericana, 15 (1999), 59–91.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Jonsson, Brownian motion on fractals and function spaces,Math. Z., 222 (1996), 496–504.

    Article  MathSciNet  Google Scholar 

  17. A. Jonsson, Dirichlet forms and Brownian motion penetrating fractals, Potential Analysis, 13 (2000), 69–80.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Jonsson and H. Wallin, Function spaces on subsets of R n, Mathematical Reports, Vol. 2, Part 1 (1984), Acad. Publ., Harwood.

    Google Scholar 

  19. J. Kigami, Analysis on fractals, (2001), Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  20. T. Kumagai, Brownian motion penetrating fractals -An application of the trace theorem of Besov spaces-, J. Func. Anal., 170 (2000), 69–92.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Kusuoka, Diffusion processes on nested fractals, In: R.L. Dobrushin and S. Kusuoka: Statistical Mechanics and Fractals, Lect. Notes Math., 1567 (1993), Springer, New York.

    Chapter  Google Scholar 

  22. T. Lindstrøm, Brownian motion on nested fractals, Memoirs Amer. Math. Soc., 420 83 (1990).

    Google Scholar 

  23. K. Pietruska-Paluba, Some function spaces related to the Brownian motion on simple nested fractals, Stochastics Stochastics Rep., 67 (1999), 267–285.

    MathSciNet  MATH  Google Scholar 

  24. K. Pietruska-Paluba, On function spaces related to fractional diffusions on d-sets, Stochastics Stochastics Rep., 70 (2000), 153–164.

    MathSciNet  MATH  Google Scholar 

  25. K. Sato, LĂ©vy processes and infinitely divisible distributions,Cambridge Studies in Advanced Math., Vol. 68 (1999), Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  26. M.L. Silverstein, Symmetric Markov processes, Lect. Notes Math., 426 (1974), Springer, New York.

    Google Scholar 

  27. A. Stós, Symmetric α-stable processes on d-sets, Bull. Polish Acad. Sci. Math., 48 (2000), 237–245.

    MathSciNet  MATH  Google Scholar 

  28. R.S. Strichartz, Function spaces on fractals, Preprint (2001).

    Google Scholar 

  29. H. Triebel, Fractals and spectra -related to Fourier analysis and function spaces-, Monographs in Math., Vol. 91 (1997), Birkhäuser, Basel-Boston-Berlin.

    Google Scholar 

  30. H. Triebel, The structure of functions, Monographs in Math., Vol. 97 (2001), Birkhäuser, Basel-Boston-Berlin.

    Book  MATH  Google Scholar 

  31. N.Th. Varopoulos, Hardy-Littelewood theory for semigroups, J. Func. Anal., 63 (1985), 240–260.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Zähle, Harmonic calculus on fractals - a measure geometric approach II, Preprint (2000).

    Google Scholar 

  33. M. Zähle, Riesz potentials and Liouville operators on fractals, In preparation (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Kumagai, T. (2003). Some Remarks for Stable-like Jump Processes on Fractals. In: Grabner, P., Woess, W. (eds) Fractals in Graz 2001. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8014-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8014-5_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9403-6

  • Online ISBN: 978-3-0348-8014-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics