Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent progress also makes it possible to use the dual-domain propagators for modeling elastic reflections for complex structures and long-range propagations of crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. (1973), Scattering of P Waves under the Montana Lasa, J. Geophys. Res. 78, 1334–1346.

    Article  Google Scholar 

  • Am, K. and Richards, P., Quantitative Seismology, vol. II (W.H. Freeman, San Francisco 1980).

    Google Scholar 

  • Berman, D. H., Wright, E. B., and Baer, R. N. (1989), An Optimal PE-type Wave Equation, J. Acoust. Soc. Am. 86, 228–233.

    Article  Google Scholar 

  • Booker, H. G. and Gordon, W. E. (1950), A Theory of Radio Scattering in the Troposphere, Proc. Inst. Radio Eng. 38, 401.

    Google Scholar 

  • Bramley, E. N. (1954), The Diffraction of Waves by Irregular Refracting Medium, Proc. R. Soc. A225, 515.

    Google Scholar 

  • Bramley, E. N. (1977), The Accuracy of Computing Ionospheric Radio-wave Scintillation by the Thinphase-screen Approximation, J. Atmos. and Terres. Phys. 39, 367–373.

    Article  Google Scholar 

  • Brown, W. P. (1973), High Energy Laser Propagation, Hughes Research Laboratory, Rept. on contract N00014-B-C-0460.

    Google Scholar 

  • Chandrasekhar, S. (1952), Mon. Not. R. Ast. Soc. 112, 475.

    Google Scholar 

  • Chernov, L. A., Wave Propagation in a Random Medium (McGraw-Hill, New York 1960).

    Google Scholar 

  • Laerbout, J. F. (1970), Coarse Grid Calculations of Waves in Inhomogeneous Media with Applications to Delineation of Complicated Seismic Structure, Geophys. 35, 407–418.

    Article  Google Scholar 

  • Claerbout, J. F., Fundamentals of Geophysical Data Processing (McGraw-Hill, 1976).

    Google Scholar 

  • Claerbout, J. F., Imaging the Earth’s Interior (Blackwell Scientific Publications, 1985).

    Google Scholar 

  • DE Hoop, M., LE Rousseau, J., and Wu, R.-S. (2000), Generalization of the Phase-screen Approximation for the Scattering of Acoustic Waves, Wave Motion 31, 43–70.

    Article  Google Scholar 

  • De Wolf, D. A. (1971), Electromagnetic Reflection from an Extended Turbulent Medium: Cumulative Forward-scatter Single-backscatter Approximation, IEEE Trans. Ant. and Prop. AP-19, 254–262.

    Article  Google Scholar 

  • De Wolf, D. A. (1985), Renormalization of EM fields in Application to Large-angle Scattering from Randomly Continuous Media and Sparse Particle Distribution, IEEE Trans. Ant. and Prop. AP-33, 608–615.

    Article  Google Scholar 

  • Devaney, A. J. (1982), A Filtered Back Propagation Algorithm for Diffraction Tomography, Ultrasonic Img. 4, 336–350.

    Article  Google Scholar 

  • Devaney, A. J. (1984), Geophysical Diffraction Tomography, Trans. IEEE GE-22, 3–13.

    Google Scholar 

  • Fehler, M., Sato, H., and Huang, L.-J. (2000), Envelope Broadening of Outgoing Waves in 2-D Random Media: A Comparison between the Markov Approximation and Numerical Simulations, Bull. Seismol. Soc. Am., in press.

    Google Scholar 

  • Feit, M. D. and Fleck, J. A., Jr. (1978), Light Propagation in Graded-index Optical Fibers, Appl. Opt. 17, 3990–3998.

    Google Scholar 

  • Fishman, L. and Mccoy, J. J. (1984), Derivation and Application of Extended Parabolic Wave Theories II. Path Intergral Representations, J. Math. Phys. 25, 297–308.

    Article  Google Scholar 

  • FlattÉ, S. M., Sound Transmission through a Fluctuating Ocean (Cambridge University Press, 1979).

    Google Scholar 

  • FlattÉ, S. M. and Tappert, F. D. (1975), Calculation of the Effect of Internal Waves on Oceanic Sound Transmission, J. Acoust. Soc. Am. 58, 1151–1159.

    Article  Google Scholar 

  • FlattÉ, and Wu(1988), Small-scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR, J. Geophys. Res. 93, 6601–6614.

    Article  Google Scholar 

  • Fleck, J. A., Jr., Morris, J. R., and Feit, M. D. (1976), Time-dependent Propagation of High Energy Laser Beams through the Atmosphere, Appl. Phys. 10, 129–160.

    Google Scholar 

  • Gubernatis, J. E., Domany, E., and Krumhabsl, J. A. (1977a), Formal Aspects of the Theory of the Scattering of Ultrasound by Flaws in Elastic Materials, J. Appl. Phys. 48, 2804–2811.

    Article  Google Scholar 

  • Gubernatis, J. E., Domany, E., Krumhabsl, J. A., and Huberman, M. (1977b), The Born Approximation in the Theory of the Scattering of Elastic Waves by Flaws, J. Appl. Phys. 48, 2812–2819.

    Article  Google Scholar 

  • Hardin, R. H. and Tappert, F. D. (1973), Applications of the Split-step Fourier Method to the Numerical Solution of Nonlinear and Variable Coefficient Wave Equation, SIAM Rev. 15, 423.

    Google Scholar 

  • Hermann, J. and Bradley, L. C. (1971), Numerical Calculation of Light Propagation, MIT Lincoln Laboratory, Cambridge, Mass., Rept. LTP-10.

    Google Scholar 

  • Huang, L.-J. and Fehler, M. (1998), Accuracy Analysis of the Split-step Fourier Propagator: Implications for Seismic Modeling and Migration, Bull. Seismol. Soc. Am. 88, 18–29.

    Google Scholar 

  • Huang, L.-J. and Fehler, M. (2000a), Quasi-born Fourier Migration, Geophys. J. Int. 140, 521–534.

    Article  Google Scholar 

  • Huang, L.-J. and Fehler, M. (2000b), Globally Optimized Fourier Finite-difference Method, Geophys., submitted.

    Google Scholar 

  • Huang, L.-J., Fehler, M., Roberts, P., and Burch, C. C. (1999a), Extended Local Rytov Fourier Migration Method, Geophysics 64, 1535–1545.

    Article  Google Scholar 

  • Huang, L.-J., Fehler, M., and Wu, R.-S. (1999b), Extended Local Born Fourier Migration Method, Geophys. 64, 1524–1534.

    Article  Google Scholar 

  • Huang, L-J. and Wu R.-S. (1996), Prestack Depth Migration with Acoustic Pseudo-screen Propagators, Mathematical Methods in Geophysical Imaging IV, SPIE 2822, 40–51.

    Google Scholar 

  • Ishimaru, A., Wave Propagation and Scattering in Random Media, vol. II (Academic Press, New York 1978).

    Google Scholar 

  • Jin, S. and Wu, R.-S. (1999a), Depth Migration with a Windowed Screen Propagator, J. Seismic Exploration 8, 27–38.

    Google Scholar 

  • Jin, S. and Wu, R.-S. (1999b), Common-offset Pseudo-screen Depth Migration, Expanded Abstracts, SEG 69th Annual Meeting, 1516–1519.

    Google Scholar 

  • Jin, S., Mosher, C. C., and Wu, R.-S. (2000), 3-D Prestack Wave Equation Common-offset Pseudo-screen Depth Migration, Expanded abstracts, SEG 70th Annual Meeting, 842–845.

    Google Scholar 

  • Jin, S., WU, R.-S., and Peng, C. (1998), Prestack Depth Migration Using a Hybrid Pseudo-screen Propagator, Expanded Abstracts, SEG 68th Annual Meeting, 1819–1822.

    Google Scholar 

  • Jin, S., Wu, R.-S., and Peng, C. (1999), Seismic Depth Migration with Screen Propagators, Comput. Geosci. 3, 321–335.

    Google Scholar 

  • Lw, Y. B. and Wu, R.-S. (1994), A Comparison between Phase-screen, Finite Difference and Eigenfunction Expansion Calculations for Scalar Waves in Inhomogeneous Media, Bull. Seismol. Soc. Am. 84, 1154–1168.

    Google Scholar 

  • Knepp, D. L. (1983), Multiple Phase-screen Calculation of the Temporal Behavior of Stochastic Waves, Proc. IEEE 71, 722–727.

    Article  Google Scholar 

  • LE Rousseau, J. H. and De Hoop, M. V. (2000), Scalar Generalized-screen Algorithms in Transversely Isotropic Media with a Vertical Symmetry Axis, Geophysics, submitted.

    Google Scholar 

  • Lee, D., Mason, I. M., and Jackson, G. M. (1991), Split-step Fourier Shot-record Migration with Deconvolution Imaging, Geophysics 56, 1786–1793.

    Article  Google Scholar 

  • Martin, J. M. and FlattÉ, S. M. (1988), Intensity Images and Statistics from Numerical Simulation of Wave Propagation in 3-D Random Media, Appl. Opt. 17, 2111–2126.

    Google Scholar 

  • Mcdaniel, S. T. (1975), Parabolic Approximations for Underwater Sound Propagation, J. Acoust. Soc. Am. 58, 1178–1185.

    Article  Google Scholar 

  • Mercier, R. P. (1962), Diffraction by a Screen Causing Large Random Phase Fluctuations, Proc. Cambridge Phil. Soc. 58, 382–400.

    Google Scholar 

  • Miles, J. W. (1960), Scattering of Elastic Waves by Small Inhomogeneities, Geophys. 25, 643–6648.

    Google Scholar 

  • Morse, P. M. and Feshbach, H., Methods of Theoretical Physics (McGraw-Hill Book Comp., New York 1953).

    Google Scholar 

  • Ring, C. L. (1978), Iterative Methods for Treating Multiple Scattering of Radio Waves, J. Atmos. Terr. Phys. 40, 1101–1118.

    Google Scholar 

  • Ring, C. L. (1982), On the Application of Phase-screen Models to the Interpretation of Ionospheric Scintillation Data, Radio Sci. 17, 855–867.

    Article  Google Scholar 

  • Ring, C. L. (1988), A Spectral-domain Method for Multiple Scattering in Continuous Randomly Irregular Media, IEEE Tr. Anten. and Prop. 36, 1114–1128.

    Article  Google Scholar 

  • Ristow, D. and Ruhl, T. (1994), Fourier Finite-difference Migration, Geophys. 59, 1882–1893. SALPETER, E. E. (1967), Interplanetary Scintillations, Astrophys. J. 147, 433–448.

    Google Scholar 

  • Schneider, W. A. (1978), Integral Formulation in Two and Three Dimensions, Geophys. 43, 49–76.

    Article  Google Scholar 

  • Stoffa, P., Fokkema, J., De Luna Freire, R., and Kessinger, W. (1990), Split-step Fourier Migration, Geophys. 55, 410–421.

    Article  Google Scholar 

  • TAPPERT, F. D. (1974), Parabolic Equation Method in Underwater Acoustics, J. Acoust. Soc. Am. 55, Supplement 34(A).

    Google Scholar 

  • Tatarskii, V. L., The Effects of the Turbulent Atmosphere on Wave Propagation (translated from Russian) (National Technical Information Service, 1971).

    Google Scholar 

  • Thomson, D. J. and Chapman, N. R. (1983), A Wide Angle Split-step Algorithm for the Parabolic Equation, J. Acoust. Soc. Am. 74, 1848–1854.

    Article  Google Scholar 

  • Tolstoy, A., Berman, D. H., and Franchi, E. R. (1985), Ray Theory versus the Parabolic Equation in a Long-range Ducted Environment, J. Acoust. Soc. Am. 78, 176–189.

    Article  Google Scholar 

  • Twersky, V. (1964), On Propagation in Random Media of Discrete Scatterers, Proc. Am. Math. Soc. Soc. Symp. Stochas. Proc. Math. Phys. Eng. 16, 84–116.

    Google Scholar 

  • Wild, A. J. and Hudson, J. A. (1998), A Geometrical Approach to the Elastic Complex-screen, J. Geophys. Res. 103, 707–726.

    Article  Google Scholar 

  • Wild, A. J., Hobbs, R. W., and Frenje, L. (2000), Modeling Complex Media: An Introduction to the Phase-screen Method, Phys. Earth and Planet. Interiors 120, 219–226.

    Google Scholar 

  • Wu, R.-S. (1989a), The Perturbation Method in Elastic Wave Scattering, Pure Appl. Geophys. 131, 605–637.

    Article  Google Scholar 

  • Wu, R.-S. (1989b), Seismic wave scattering. In Encyclopedia of Geophysics (ed., D. James, Van Norstrand Reinhold and Comp.), 1166–1187.

    Google Scholar 

  • Wu, R.-S. (1994), Wide-angle Elastic Wave One-way Propagation in Heterogeneous Media and an Elastic Wave Complex-screen Method, J. Geophys. Res. 99, 751–766.

    Article  Google Scholar 

  • Wu, R.-S. (1996), Synthetic Seismograms in Heterogeneous Media by One-return Approximation, Pure Appt. Geophys. 148, 155–173.

    Google Scholar 

  • Wu, R.-S. and Aki, K. (1985a), Scattering Characteristics of Elastic Waves by an Elastic Heterogeneity, Geophys. 50, 582–595.

    Article  Google Scholar 

  • Wu, R.-S. and Aki, K. (1985b), Elastic Wave Scattering by a Random Medium and the Small-scale Inhomogeneities in the Lithosphere, J. Geophys. Res. 90, 10,261–10,273.

    Article  Google Scholar 

  • Wu, R.-S. and De Hoop, M. V. (1996), Accuracy analysis and numerical tests of screen propagators for wave extrapolation, Mathematical Methods in Geophysical Imaging IV, SPIE 2822, 196–209.

    Google Scholar 

  • Wu, R.-S. and FlattÉ S. M. (1990), Transmission Fluctuations across an Array and Heterogeneities in the Crust and Upper Mantle, Pure Appl. Geophys. 132, 175–196.

    Google Scholar 

  • Wu, R.-S. and Huang, L.-J. (1992), Scattered Field Calculation in Heterogeneous Media Using Phase-screen Propagator, Expanded Abstracts of the Technical Program, SEG 62nd Annual Meeting, 1289–1292.

    Google Scholar 

  • Wu, R.-S. and HUANG, L.-J. (1995), Reflected wave modeling in heterogeneous acoustic media using the De Wolf approximation, Mathematical Methods in Geophysical Imaging III, SPIE 2571, 176–186.

    Google Scholar 

  • Wu, R.-S., Huang, L.-J., and Xie, X.-B. (1995), Backscattered Wave Calculation Using the De Wolf Approximation and a Phase-screen Propagator, Expanded Abstracts, SEG 65th Annual Meeting, 1293–1296.

    Google Scholar 

  • Wu, R.-S. and Jin, S. (1997), Windowed GSP (Generalized Screen Propagators) Migration Applied to SEGEAEG Salt Model Data, Expanded abstracts, SEG 67th Annual Meeting, 1746–1749.

    Google Scholar 

  • Wu, R.-S., Jin, S., and Xie, X.-B. (2000a), Seismic Wave Propagation and Scattering in Heterogeneous Crustal Waveguides Using Screen Propagators: I SH Waves, Bull. Seismol. Soc. Am. 90, 401–413.

    Article  Google Scholar 

  • Wu, R.-S., Jin, S., and Xie, X.-B. (2000b), Energy Partition and Attenuation of Lg Waves by Numerical Simulations Using Screen Propagators, Phys. Earth and Planet. Inter. 120, 227–244.

    Article  Google Scholar 

  • Wu, R.-S. and Toxsöz, M. N. (1987), Diffraction Tomography and Multisource Holography Applied to Seismic Imaging, Geophys. 52, 11–25.

    Article  Google Scholar 

  • Wu, R.-S. and Xie, X.-B. (1993), A Complex-screen Method for Elastic Wave One-way Propagation in Heterogeneous Media, Expanded Abstracts of the 3rd International Congress of the Brazilian Geophysical Society.

    Google Scholar 

  • Wu, R.-S. and Xie, X.-B. (1994), Multi-screen backpropagator for fast 3D elastic prestack migration, Mathematical Methods in Geophysical Imaging II, SPIE, 2301, 181–193.

    Article  Google Scholar 

  • Wu, R.-S., Xie, X.-B., and Wu, X.-Y. (1999), Lg wave simulations in heterogeneous crusts with irresular topography using half-space screen propagators, Proceedings of the 21th Annual Seismic Research Symposium on Monitoring a Comprehensive Test Ban Treaty, pp. 683–693.

    Google Scholar 

  • Wu, X.-Y. and Wu, R.-S. (1998), An Improvement to Complex Screen Method for Modeling Elastic Wave Reflections, Expanded abstracts, SEG 68th Annual Meeting, 1941–1944.

    Google Scholar 

  • Wu, X.-Y. and Wu, R.-S. (1999), Wide-angle Thin-slab Propagator with Phase Matching for Elastic Wave Modeling, Expanded abstracts, SEG 69th Annual Meeting, I867–1870.

    Google Scholar 

  • Xie, X.-B. and Wu, R.-S. (1995), A Complex-screen Method for Modeling Elastic Wave Reflections, Expanded Abstracts, SEG 65th Annual Meeting, 1269–1272.

    Google Scholar 

  • Xie, X.-B. and Wu, R.-S. (1996), 3-D Elastic Wave Modeling Using the Complex Screen Method, Expanded Abstracts of the Technical Program, SEG 66th Annual Meeting, 1247–1250.

    Google Scholar 

  • Xie, X.-B. and Wu, R.-S. (1998), Improve the Wide Angle Accuracy of Screen Method under Large Contrast, Expanded abstracts, SEG 68th Annual Meeting, 1811–1814.

    Google Scholar 

  • Xie, X.-B. and Wu, R.-S. (1999), Improving the Wide Angle Accuracy of the Screen Propagator for Elastic Wave Propagation, Expanded abstracts, SEG 69th Annual Meeting, 1863–1866.

    Google Scholar 

  • Xie, X.-B. and Wu, R.-S. (2000), Modeling Elastic Wave Forward Propagation and Reflection Using the Complex-screen Method, J. Acoust. Soc. Am., accepted.

    Google Scholar 

  • Xie, X.-B., Mosher, C. C. and Wu, R.-S. (2000), The Application of Wide Angle Screen Propagator to 2-D and 3-D Depth Migrations, Expanded abstracts, SEG 70th Annual Meeting, 878–881.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Wu, RS. (2003). Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators. In: Ben-Zion, Y. (eds) Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8010-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8010-7_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7011-4

  • Online ISBN: 978-3-0348-8010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics