Skip to main content

Persistent Ergodicity and Stably Ergodic SRB Attractors in Equivariant Dynamics

  • Chapter
Bifurcation, Symmetry and Patterns

Part of the book series: Trends in Mathematics ((TM))

Abstract

We describe some recent analytic results on the co-existence of symmetry and chaotic dynamics in equivariant dynamics. We emphasize the case of skew-products and stably SRB attractors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R Adler, B Kitchens and M Shub. `Stably ergodic skew products’Discrete and Continuous Dynamical Systems2 (1996), 349–456 (Errata in 5 (1999)).

    Article  MathSciNet  MATH  Google Scholar 

  2. D V Anosov. `Geodesic flows on closed Riemann manifolds with negative curvature’Proc. of the Steklov Inst. of Math., 90 (1967).

    Google Scholar 

  3. P. Ashwin and I. Melbourne. Symmetry groups of attractors.Arch. Rat. Mech. Anal.126 (1994) 59–78.

    Article  MathSciNet  MATH  Google Scholar 

  4. R Bowen.Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms.Springer Lect. Notes in Math. 470, 1975.

    MATH  Google Scholar 

  5. M I Brin. `Topology of group extensions of Anosov systems’Mathematical Notes of the Acad. of Sciences of the USSR18(3) (1975), 858–864.

    Article  MathSciNet  Google Scholar 

  6. M I Brin. `Topological transitivity of one class of dynamic systems and flows of frames on manifolds of negative curvature’Funkts. Anal. Prilozh9, No. 1, (1975), 9–19.

    MathSciNet  Google Scholar 

  7. M I Brin and J B Pesin. `Partially hyperbolic dynamical systems’Math. USSR Izvestia8, (1974), 177–218.

    Article  Google Scholar 

  8. K Burns and A Wilkinson. `Stable ergodicity of skew products’ Ann.Sci. de l’Ecole Norm. Sup.32 (1999), 859–889.

    MathSciNet  MATH  Google Scholar 

  9. K Burns, C Pugh, M Shub and A Wilkinson. `Recent results about stable ergodicity’, to appear inProc. AMS Summer Research Institute, Seattle, 1999.

    Google Scholar 

  10. P Chossat and M GolubitskySymmetry increasing bifurcations of chaotic attractorsPhysica D 32 (1988), 423–436.

    Article  MathSciNet  MATH  Google Scholar 

  11. U-R Fiebig. `Periodic points and finite group actions on shifts of finite types’Erg. Thy. l Dynam. Sys.13 (1993), 485–514.

    MathSciNet  MATH  Google Scholar 

  12. M J Field. `Isotopy and stability of equivariant diffeomorphisms’Proc. London Math. Soc.(3) 46 (1983), 487–516.

    Article  MathSciNet  MATH  Google Scholar 

  13. M J Field. `Generating sets for compact semisimple Lie groups’Proc. Amer. Math. Soc.(1999), 3361–3365.

    Google Scholar 

  14. M J Field, I Melbourne and M Nicol. ‘Symmetric Attractors for Diffeomorphisms and Flows’Proc. London Math. Soc.72(3) (1996), 657–696.

    Article  MathSciNet  MATH  Google Scholar 

  15. M J Field and M Nicol. `Ergodic theory of equivariant diffeomorphisms; Markov partitions and Stable Ergodicity’, preprint.

    Google Scholar 

  16. M J Field and V Nitic¨¢. `Stable topological transitivity of skew and principal extensions’Nonlinearity14 (2001), 1–15.

    Article  Google Scholar 

  17. M J Field and W Parry. `Stable ergodicity of skew extensions by compact Lie groups’Topology38, (1999), 167–187.

    Article  MathSciNet  MATH  Google Scholar 

  18. M Grayson, C Pugh and M Shub. `Stably ergodic diffeomorphisms’Annal of Math.140 (1994), 295–329.

    Article  MathSciNet  MATH  Google Scholar 

  19. A Katok and B Hasselblatt.Introduction to the Modern Theory of Dynamical Systems(Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995.)

    Book  MATH  Google Scholar 

  20. A Katok and A Kononenko. `Cocycle stability for partially hyperbolic systems’Math. Res. Lett.3 (1996), 191–210.

    MathSciNet  MATH  Google Scholar 

  21. F Ledrappier and L S Young. `The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin’s entropy formula’Ann. of Math122 (1985), 509–539.

    Article  MathSciNet  MATH  Google Scholar 

  22. A N Livsic. `Cohomology of Dynamical Systems’Mathematics of the USSR Izvestija6(6), (1972), 1278–1301.

    Article  Google Scholar 

  23. W Parry. `Skew-products of shifts with a compact Lie group’J. London Math. Soc.56(2) (1997), 400–404.

    Google Scholar 

  24. W Parry and M Pollicott. `Stability of mixing for toral extensions of hyperbolic systems’Tr. Mat. Inst. Steklova216 (1997), Din Sist. i Smezhnye Vopr., 354–363.

    MathSciNet  Google Scholar 

  25. C Pugh and M Shub. `Stably ergodic dynamical systems and partial hyperbolicity’J. of Complexity13 (1997), 125–179.

    Article  MathSciNet  MATH  Google Scholar 

  26. D Ruelle and D Sullivan. `Currents, flows and diffeomorphisms’Topology14, (1975), 319–327

    Article  MathSciNet  MATH  Google Scholar 

  27. M Shub and A Wilkinson. `Pathological foliations and removable zero exponents’Invent. Math..139 (2000), 495–508.

    Article  MathSciNet  MATH  Google Scholar 

  28. L S Young. `Ergodic theory of chaotic dynamical systems’, Lect. Notes in Math. (FromTopology to Computation: Proceedings of the Smalefest(eds Hirsch, Marsden, Shub), Springer-Verlag, New York, Heidelberg, Berlin, 1993.)

    Google Scholar 

  29. P Walters. AnIntroduction to Ergodic Theory.(Springer Verlag, 1982).

    Google Scholar 

  30. A Wilkinson. ‘Stable ergodicity of the time-one map of a geodesic flow’Erg. Th. Dyn. Syst.18(6) (1998), 1545–1588.

    Article  MathSciNet  MATH  Google Scholar 

  31. R F Williams. One-dimensional non-wandering setsTopology6 (1967), 473–487.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Field, M. (2003). Persistent Ergodicity and Stably Ergodic SRB Attractors in Equivariant Dynamics. In: Buescu, J., Castro, S.B.S.D., da Silva Dias, A.P., Labouriau, I.S. (eds) Bifurcation, Symmetry and Patterns. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7982-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7982-8_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9642-9

  • Online ISBN: 978-3-0348-7982-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics