Skip to main content

Abstract

The initial value problem is well defined on a class of spacetimes broader than the globally hyperbolic geometries for which existence and uniqueness theorems are traditionally proved. Simple examples are the timenonorientable spacetimes whose orientable double cover is globally hyperbolic. These spacetimes have generalized Cauchy surfaces on which smooth initial data sets yield unique solutions. A more difficult problem is to characterize the class of spacetimes with closed timelike curves that admit a well-posed initial value problem. Examples of spacetimes with closed timelike curves are given for which smooth initial data at past null infinity has been recently shown to yield solutions. These solutions appear to be unique, and uniqueness has been proved in particular cases. Other examples, however, show that confining closed timelike curves to compact regions is not sufficient to guarantee uniqueness. An approach to the characterization problem is suggested by the behavior of congruences of null rays. Interacting fields have not yet been studied, but particle models suggest that uniqueness (and possibly existence) is likely to be lost as the strength of the interaction increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Friedman and A. Higuchi, Phys. Rev D 52, 5687 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  2. J.L. Friedman, “Lorentzian universes-from-nothing,” Classical and Quantum Gravity, 15, 2639 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time, 1973 (Cambridge: Cambridge University Press).

    Book  MATH  Google Scholar 

  4. J.L. Friedman, “Two-component spinor fields on a class of time-nonorientable space-time,” Class. Quantum Gray. 12, 2231 (1995).

    Article  ADS  MATH  Google Scholar 

  5. A. Chamblin and G.W. Gibbons, “A judgement on sinors,” Class. Quantum Gray. 12, 2243 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. U. Yurtsever, Class. Quantum Gray., 11, 999 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C.W. Misner, in Relativity Theory and Astrophysics I. Relativity and Cosmology, ed. J. Ehlers, 1967 (Providence: Amer. Math. Soc.).

    Google Scholar 

  8. Politzer, H.D., “Simple quantum systems in spacetimes with closed timelike curves.” Phys. Rev. D 46, 4470–4476 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  9. Gott, J.R., “Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions.” Phys. Rev. Lett., 66, 1126–1129 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R. Geroch, and G. Horowitz: Global structure of spacetimes. In: S.W. Hawking, W. Israel (eds.), General Relativity. Cambridge, 1979 pp. 212–193.

    Google Scholar 

  11. D.S. Goldwirth, M.J. Perry, T. Piran, and K.S. Thorne, Phys. Rev. D 49, 3951 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Cutler, “Global structure of Gott’s two-string spacetime,” Phys. Rev. D, 45, 487 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Carinhas, Doctoral Dissertation, University of Wisconsin-Milwaukee (1993); “Cauchy Problem for Gott Spacetime,” gr-qc/9507020 (1995).

    Google Scholar 

  14. D. Boulware, Phys. Rev. D 46, 4421 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  15. K.S. Thorne, in Directions in General Relativity, v. 1, eds. B.L. Hu, M.P. Ryan, and C.V. Vishveshwara, 1994 (Cambridge: Cambridge Univ. Press).

    Google Scholar 

  16. Tipler, F.J.: Singularities and Causality Violation. Ann. Phys. 108, 1–36 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Hawking, S.W.: Chronology protection conjecture, Phys. Rev. Lett. 46, 603 (1992)

    MathSciNet  ADS  Google Scholar 

  18. P.T. Chrusciel, J. Isenberg, “On the dynamics of generators of Cauchy horizons,” Proceedings of the Kananaskis conference on chaos in general relativity, ed. D. Hobill, A. Burd and A. Coley, pp. 113–125, (Plenum) 1994; preprint, gr-qc/9401015 (1994).

    Google Scholar 

  19. A. Bachelot, “Global properties of the wave equation on non-globally hyperbolic manifolds,” J. Math. Pures Appl. 81, 35–65 (2002).

    MathSciNet  MATH  Google Scholar 

  20. Morris, M.S., Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395–412 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  21. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446–1449 (1988).

    Article  ADS  Google Scholar 

  22. Friedman, J.L., Morris, M.S., Novikov, I.D., Echeverria, F., Klinkhammer, G., Thorne, K.S., Yurtsever, U.: Cauchy problem on spacetimes with closed timelike curves. Phys. Rev. D, 42, 1915–1930 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  23. Friedman, J.L., Morris, M.S.: The Cauchy problem for the scalar wave equation is well defined on a class of spacetimes with closed timelike curves. Phys. Rev. Lett.66, 401–404 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Friedman, J.L., Morris, M.S.: Existence and uniqueness theorems for massless fields on a class of spacetimes with closed timelike curves. Comm. Math. Phys. 186, 495 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Palais, R.S.: Seminar on the Atiyah-Singer index theorem. Princeton: Princeton University Press, 1965, Chap. X.

    Google Scholar 

  26. Wilcox, C. H.:Scattering Theory for the D’Alembert Equation in Exterior Domains. New York: Springer-Verlag, 1975.

    Google Scholar 

  27. Echeverria, F. Klinkhammer, G. & Thorne, K.S.: Billiard balls in wormhole space-times with closed timelike curves: Classical theory. Phys. Rev. D, 44, 1077–1099 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  28. C.J. Fewster, A. Higuchi, and C.G. Wells, “Classical and quantum initial value problems for models of chronology violation,” Phys. Rev. D54, 3806–3854 (1996).

    MathSciNet  ADS  Google Scholar 

  29. R. Geroch, private conversation.

    Google Scholar 

  30. A. Chamblin, G.W. Gibbons, and A.R. Steif, Kinks Steif and Time Machines, DAMPT preprint (and electronic preprint gr-qc/9405001)(1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Friedman, J.L. (2004). The Cauchy Problem on Spacetimes That Are Not Globally Hyperbolic. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7953-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7953-8_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9634-4

  • Online ISBN: 978-3-0348-7953-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics