Skip to main content
  • 375 Accesses

Abstract

The evolution of industrialized societies in the 20th century has led to the diffusion of systems for the production of goods and services with a high degree of complexity linked to the large scale and/or the high level of automation and information technology. The idea of scientific management, which emerged at the beginning of the century, clearly indicated the need for an explicit, rational “functional representation” of the new production systems, which would replace the implicit, intuitive operational knowledge typical of the traditional workshop. This kind of representation would be helpful in overcoming the intrinsic uncertainty regarding the behavior of the system, which cannot be explained on the sole basis of the behavior of its single components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson Ph., 1999, “Complexity theory and organization science”, Organization Science, 10: 216–232.

    Article  Google Scholar 

  • Babcock, G. D., 1917, The Taylor System in Franklin Management: Application Results, New York, The Engineering Magazine.

    Google Scholar 

  • Burbidge J. L., 1996, Period Batch Control, Oxford, Clarendon Press.

    Google Scholar 

  • Burks, A. W., Goldstein, H. H., and von Neumann, J. L., 1946, Preliminary discussion of the logical design of an electronic computing instrument, Report prepared for U.S. Army Ordnance Department under contract W-36–034-ORD-7481, in: Papers of John von Neumann on Computing and Computer Science (Aspray, W. and Bruks, A., eds.), Cambridge (Mass.), MIT Press, 1987: 97–142.

    Google Scholar 

  • Clippinger, J., 1999, The Biology of Business: Decoding the Natural Laws of Enterprise, San Francisco, Jossey-Bass.

    Google Scholar 

  • Coes, H. V., 1928, “Mechanical scheduling”, in: 110 Tested Plans that Increased Factory Profits; Ideas Selected from the Pages of Factory and Industrial Management, as of Particular Value in Practical Factory Management (Dutton, H. P., ed.), Chicago-New York, McGraw-Shaw.

    Google Scholar 

  • Cook, S. A., 1971, “The complexity of theorem proving procedures”, in: Conference Record of the Third Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio, 3–5: 151–158.

    Google Scholar 

  • Cowan, G.A., Pines, D., and Meltzer, D. (eds.), 1994, Complexity: Metaphors, Models and Reality, Reading (Mass.), Addison Wesley.

    Google Scholar 

  • Deming W. E., 1993, The New Economics for Industry, Government, Education, Cambridge (Mass.), Massachusetts Institute of Technology, Center for Advanced Engineering Study.

    Google Scholar 

  • Deming W. E., 1950, Elementary Principles of the Statistical Control of Quality, Tokyo, Nippon Kagaku Gijutsu Renmei.

    Google Scholar 

  • Deming W. E., 1986, Out of the Crisis, Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Dorfman R., Samuelson, P., Solow, R., 1958, Linear Programming and Economic Analysis, New York, The Rand Corporation/McGraw Hill.

    MATH  Google Scholar 

  • Fayol, H., 1918, Administration industrielle et gènèrale, Paris, Dunod (English translation, General and Industrial Management, London, Pitman, 1949).

    Google Scholar 

  • Ford, H., 1922, My Life and Work, New York, Doubleday.

    Google Scholar 

  • Ford L. R. and Fulkerson, D. R., 1962, Flows in Networks, Princeton (N. J.), Princeton University Press.

    MATH  Google Scholar 

  • Gantt, H. L., 1910, Work, Wages and Profits, New York, The Engineering Magazine. Gantt, H. L., 1916, Industrial Leadership, New Haven, Yale University Press.

    Google Scholar 

  • Gantt H. L., 1919, Organizing for Work, New York, Harcourt, Brace and Howe.

    Google Scholar 

  • Gantt, H., 1961, Gantt on Management; Guidelines for today’s Executive, New York, American Management Association.

    Google Scholar 

  • Garey, M. R. and Johnson, D.S., 1979, Computers and Intractability: Guide to the Theory of NP-completeness, San Francisco, Freeman.

    MATH  Google Scholar 

  • Gell-Mann, M., 1994, “Complex adaptive systems”, in: Cowan, Pines, and Meltzer 1994. Ishikawa, K., 1976, Guide to Quality Control, Tokyo, Asian Productivity Organization. Ishikawa, K., 1990, Introduction to Quality Control, Tokyo, 3A Corporation,.

    Google Scholar 

  • Karp, R. M., 1972, “Reducibility among combinatorial problems”, in: Complexity of Com-puter Computations (Miller, R.E. and Thatcher, J.W., eds.), New York, Plenum Press.

    Google Scholar 

  • Kerzner, H., 1992, Project Management, New York, Van Nostrand Reinhold. Koestler, A., 1967, The Ghost in the Machine, London, Hutchinson.

    Google Scholar 

  • Koopmans, T.C. (ed.), 1951, Activity Analysis of Production and Allocation, New York, Yale University Press/Wiley.

    Google Scholar 

  • Kuhn, Th., 1962, The Structure of Scientific Revolutions, Chicago, University of Chicago Press.

    Google Scholar 

  • Lenstra, J.K., Rinnooy Kan, A.H.G., and Schrijver, A. (eds), 1991, History of Mathematical Programming. A Collection of Personal Reminiscences, Amsterdam, CWI/North Holland.

    MATH  Google Scholar 

  • Leontief, W., 1966, Input-output Economics, New York, Oxford University Press.

    Google Scholar 

  • Mainzer, K., 1994, Thinking in Complexity: The Complex Dynamics of Matter, Mind, and Mankind, Berlin-New York, Springer.

    Google Scholar 

  • Mayo, E., 1945, The Social Problems of an Industrial Civilization, Cambridge (Mass.), Harvard University Press.

    Google Scholar 

  • McKay, K.N. and Buzacott, J.A., 1999, “Adaptive production control in modern industries”, in: Modeling Manufacturing Systems: From Aggregate Planning to Real-time Control, (Brandimarte, P. and Villa, A., eds.), Berlin-NewYork, Springer.

    Google Scholar 

  • Mintzberg, H., 1983, Structure in Fives. Designing Effective Organizations, Englewood Cliffs, N. J., Prentice Hall.

    Google Scholar 

  • von Neumann J., and O. Morgenstern, 1944, Theory of Games and Economic Behavior, Princeton (N. J.), Princeton University Press.

    MATH  Google Scholar 

  • Ohno, T., 1988, The Toyota Production System: Beyond Large-scale Production, Cambridge (Mass.), Productivity Press.

    Google Scholar 

  • Perrow, Ch., 1972, Complex Organizations: A Critical Essay, Glenview, Ill., Scott, Fores-man.

    Google Scholar 

  • Prigogine, I. and Stengers, I., 1984, Order out of Chaos: Man’s New Dialog with Nature, New York, Bantam Books.

    Google Scholar 

  • Pugh, D. S., 1971, Organization Theory, London, Penguin Books.

    Google Scholar 

  • Riggs, J. L., 1970, Production Systems: Planning, Analysis, and Control, New York, Wiley.

    Google Scholar 

  • Scott, W. R., 1981, Organizations, Upper Saddle River (N. J.), Prentice Hall.

    Google Scholar 

  • Simon, H., 1962, “The architecture of complexity”, Proceedings of the American Philosophical Society, 106(6). 111

    Google Scholar 

  • Simon, H., 1969, The Sciences of Artificial, Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Simon, H., 1982, Models for Bounded Rationality, Cambridge (Mass.), MIT Press. Sloan, A. P., 1963, My Years with General Motors, New York, Doubleday.

    Google Scholar 

  • Taguchi, G., and Konishi, S., 1987, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, Dearborn (Mich.), American Supplier Institute.

    Google Scholar 

  • Taylor, F. W., 1911, The Principles of Scientific Management, New York, Harper and Brothers.

    Google Scholar 

  • Thompson, J. D., 1967, Organizations in Action, New York, McGraw Hill.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Lucertini, M. (2004). Coping With Complexity in the Management of Organized Systems. In: Gasca, A.M., Lucertini, M., Nicolò, F. (eds) Technological Concepts and Mathematical Models in the Evolution of Modern Engineering Systems. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7951-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7951-4_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9633-7

  • Online ISBN: 978-3-0348-7951-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics