Skip to main content

On a Transformation of the Sturm-Liouville Equation with Slowly Decaying Potentials and the Titchmarsh-Weyl m-function

  • Conference paper
Spectral Methods for Operators of Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 154))

  • 338 Accesses

Abstract

We put forward a new transformation of the half-line Sturm-Liouville equation with non-smooth potentials from L p ,with p ≥ 2. This transformation yields existence of the Weyl solution with higher order WKB-type asymptotic behavior (spatial and spectral parameter). We apply our approach to the study of high-energy asymptotics for the Titchmarsh-Weyl m-function, improving on some relevant results of others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.V. AtkinsonOn the location of the Weyl circles,Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), no. 3–4, 345–356.

    Article  MathSciNet  MATH  Google Scholar 

  2. F.V. Atkinson and C. T. Fulton, Asymptotics of the Titchmarsh-Weyl m-coefficient for non-integrable potentials, Proc. Roy. Soc Edinburgh Sect. A 129 (1999), no. 4, 663–683

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Bennewitz, A proof of the local Borg-Marchenko theorem, Comm. Math. Phys. 218 (2001), no. 1, 131–132.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bennewitz, Spectral asymptotics for Sturm-Liouville equations, Proc. London Math. Soc. (3) 59 (1989), no. 2, 294–338.

    Article  MathSciNet  MATH  Google Scholar 

  5. V.S. Buslaev and V.B. Matveev, Wave operators for the Schrödinger equation with slowly decreasing potential, Theoret. and Math. Phys. 2 (1970), no. 3, 266–274.

    Article  MathSciNet  Google Scholar 

  6. B.M. Brown, I. Knowles, and R. Weikard, On the inverse resonace problem,J. London Math. Soc. (2) 68 (2003), no. 2, 383–401.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Christ and A. Kiselev, Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials. Geom. Funct. Anal. 12 (2002), no. 6, 1174–1234.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Clark and F. Gesztesy, Weyl-Titchmarsh M -function asymptotics,local uniqueness results,trace formulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3475–3534

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Clark and F. Gesztesy, Weyl-Titchmarsh M -function asymptotics for matrix-valued Schrödinger operators, Proc. London Math. Soc. (3) 82 (2001), no. 3, 701–724.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Commun. Math. Phys. 203 (1999), 341–347.

    Article  MathSciNet  MATH  Google Scholar 

  11. W.N. Everitt, On a property of the m -coefficient of a second-order linear differential equation, J. London Math. Soc. (2) 4 (1971/72), 443–457.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.J. Gilbert and D.B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), 30–56.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Gesztesy and B. Simon, A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure, Ann. of Math. (2) 152 (2000), no. 2, 593–643.

    Article  MathSciNet  MATH  Google Scholar 

  14. B.J. Harris, The asymptotic form of the Titchmarsh-Weyl m-function associated with a non-definite, linear,second order differential equation, Mathematika 43 (1996), no. 1, 209–222.

    Article  MathSciNet  MATH  Google Scholar 

  15. B.J. Harris, An exact method for the calculation of certain Titchmarsh-Weyl mfunctions. Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), no. 1–2, 137–142.

    Article  MathSciNet  MATH  Google Scholar 

  16. B.J. Harris, The asymptotic form of the Titchmarsh-Weyl m-function associated with a second-order differential equation with locally integrable coefficient. Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 3–4, 243–251.

    Article  MathSciNet  MATH  Google Scholar 

  17. D.B. Hinton, M. Klaus, and J.K. Shaw, Series representation and asymptotics for Titchmarsh-Weyl m-functions., Differential Integral Equations 2 (1989), no. 4, 419–429.

    MathSciNet  MATH  Google Scholar 

  18. H.G. Kaper and M.K. Kwong, Asymptotics of the Titchmarsh-Weyl m-coefficient for integrable potentials. II. Differential equations and mathematical physics (Birmingham, Ala., 1986), 222–229, Lecture Notes in Math., 1285, Springer, Berlin, 1987.

    Google Scholar 

  19. H.G. Kaper and M.K. Kwong, Asymptotics of the Titchmarsh-Weyl m-coefficient for integrable potentials, Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), no. 3–4, 347–358.

    Article  MathSciNet  MATH  Google Scholar 

  20. L.S. Koplienko, Regularized function of spectral shift for a one-dimensional Schrodinger operator with slowly decreasing potential, Siberian Math. J. 26 (1985), no. 3, 365–369.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Muscalu, T. Tao and C. Thiele, A counterexample to a multilinear endpoint question of Christ and Kiselev. Math. Res. Lett. 10 (2003), no. 2–3, 237–246.

    MathSciNet  MATH  Google Scholar 

  22. A. Rybkin, On the absolutely continuous spectrum and negative discrete spectra of Schrödinger operators on the line with locally integrable globally square summable potentials,to appear in JMP.

    Google Scholar 

  23. A. Rybkin, Some new and old asymptotic representations of the Jost solution and the Weyl m-function for Schrödinger operators on the line. Bull. London Math. Soc. 34 (2002), no. 1, 61–72.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Rybkin, On a complete analysis of high-energy scattering matrix asymptotics for one-dimensional Schrödinger operators with integrable potentials, Proc. Amer. Math. Soc. 130 (2002), no. 1, 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2 Edition, Clarendon Press, Oxford 1962, 203 pp.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Rybkin, A. (2004). On a Transformation of the Sturm-Liouville Equation with Slowly Decaying Potentials and the Titchmarsh-Weyl m-function. In: Janas, J., Kurasov, P., Naboko, S. (eds) Spectral Methods for Operators of Mathematical Physics. Operator Theory: Advances and Applications, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7947-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7947-7_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9632-0

  • Online ISBN: 978-3-0348-7947-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics