Skip to main content

Nonlinear evolutions with Carathéodory forcing

  • Chapter
Nonlinear Evolution Equations and Related Topics
  • 842 Accesses

Abstract

Let A be an m-accretive operator in a real Banach space X and f : J x X → X a function of Carathéodory type, where J = [0,a] ⊂ ℝ. This paper investigates the existence of mild solutions of the evolution system

$$ u' + Au \ni f(t,u) on J = [0,a]. $$

satisfying additional time-dependent constraints u(t)K(t) on J for a given tube K(·). Main emphasis is on existence results that are valid under minimal assumptions on f, K and X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbu,V.Nonlinear Semigroups and Differential Equations in Banach Spaces. Leyden: Noordhoff 1976.

    Book  Google Scholar 

  2. BBNILAN, PH., Crandall, M. G., and PAZY, A.Nonlinear Evolution Equations in Banach Spaces.(monograph in preparation).

    Google Scholar 

  3. Bothe, D., Multivalued differential equations with time-dependent constraints. pp. 1829–1839 in “Proc. of the First World Congress of Nonlinear Analysts, Tampa, Florida 1992” (V. Lakshmikantham, ed). W. de Gruyter 1996.

    Google Scholar 

  4. Bothe, D.Flow invariance for perturbed nonlinear evolution equations.Abstract and Applied Analysis 1 (1996), 379–395.

    Article  MathSciNet  Google Scholar 

  5. Bothe, D.Reaction-diffusion systems with discontinuities. A viability approach.Proc. 2nd World Congress of Nonlinear Analysts, Nonlinear Analysis30(1997), 677–686.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bothe, D.Multivalued perturbations of m-accretive differential inclusions.Israel J. Math.108(1998), 109–138.

    MathSciNet  MATH  Google Scholar 

  7. Bothe, D.Periodic Solutions of a Nonlinear Evolution Problem from Heterogeneous Catalysis.Differential and Integral Equations14(2001), 641–670.

    MathSciNet  MATH  Google Scholar 

  8. Bothe, D.Nonlinear Evolutions in Banach Spaces. Existence and Qualitative Theory with Applications to Reaction-Diffusion Systems.Habilitation thesis, University Paderborn 1999.

    Google Scholar 

  9. Bressan, A. and Staicu, V.On Nonconvex perturbations of maximal monotone differential inclusions.Setvalued Analysis 2 (1994), 415–437.

    MathSciNet  MATH  Google Scholar 

  10. Caria, O. and Monteiro Marques, M. D. P.Viability for nonautonomous semilinear differential equations.J. Diff. Eqs.166(2000), 328–346.

    Article  Google Scholar 

  11. Caria, O. and Vrabie, I. I., Viable domains for differential equations governed by Carathéodory pertur-bations of nonlinear m-accretive operators. pp. 109–130 in Lecture Notes in Pure and Appl. Math. 255, Dekker 2002.

    Google Scholar 

  12. Cascaval, R. and Vrabie, L I.Existence of periodic solutions for a class of nonlinear evolution equations.Rev. Mat. Univ. Complutense Madr. 7 (1994), 325–338.

    MathSciNet  MATH  Google Scholar 

  13. Cohn, D. L., Measure Theory. Birkhäuser 1980.

    Google Scholar 

  14. de Imling, K., Multivalued Differential Equations. De Gruyter 1992.

    Book  Google Scholar 

  15. Hewitt, E. and Stromberg, K., Real and Abstract Analysis (2nd ed.), Springer 1969.

    Google Scholar 

  16. Iwamiya, T.Global existence of mild solutions to semilinear differential equations in Banach spaces.Hiroshima Math. J.16(1986), 499–530.

    MathSciNet  MATH  Google Scholar 

  17. Kucia, A.Scorza Dragoni type theorems.Fund. Math138(1991), 197–203.

    MathSciNet  MATH  Google Scholar 

  18. Pavel, N. H.Invariant sets for a class of semilinear equations of evolutionNonlinear Analysis1(1977)

    Google Scholar 

  19. Pavel, N. H., Differential Equations, Flow Invariance and Applications. Res. Notes Math. 113, Pitman 1984.

    Google Scholar 

  20. Pierre, M.Invariant closed subsets for nonlinear semigroups.Nonlinear Analysis 2 (1978), 107–117.

    Article  MathSciNet  MATH  Google Scholar 

  21. Vrabie, I.I.Compactness methods and flow-invariance for perturbed nonlinear semigroups. Anal. Stun. Univ. Iasi 27 (1981), 117–124.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the Remembrance of Philippe Bénilan

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Bothe, D. (2003). Nonlinear evolutions with Carathéodory forcing. In: Arendt, W., Brézis, H., Pierre, M. (eds) Nonlinear Evolution Equations and Related Topics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7924-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7924-8_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7107-4

  • Online ISBN: 978-3-0348-7924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics