Skip to main content

On the uniqueness of solutions for nonlinear elliptic-parabolic equations

  • Chapter
Nonlinear Evolution Equations and Related Topics

Abstract

We prove a priori estimates in L 2(0,T;W 1,2(Ω)) and L(Q) T existence and uniqueness of solutions to Cauchy-Dirichlet problems for elliptic-parabolic systems

$$ \frac{{\partial \sigma (u)}}{{\partial t}} - \sum\limits_{{i = 1}}^{n} {\frac{\partial }{{\partial {x_{i}}}}\left\{ {\rho (u){b_{i}}\left( {t,x,\frac{{\partial (u - \upsilon )}}{{\partial x}}} \right)} \right\}} + a(t,x,\upsilon ,u) = 0, $$
$$ - \sum\limits_{{i = 1}}^{n} {\frac{\partial }{{\partial {x_{i}}}}\left[ {\kappa (x)\frac{{\partial \upsilon }}{{\partial {x_{i}}}}} \right]} + \sigma (u) = f(t,x),(t,x) \in {Q_{T}} = (0,T) x \Omega , $$

where \( \rho (u) = \frac{{\partial \sigma (u)}}{{\partial u}} \). Systems of such form arise as mathematical models of various applied problems, for instance, electron transport processes in semiconductors. Our basic assumption is that log ρ(u) is concave. Such assumption is natural in view of drift-diffusion models, whereahas to be specified as a probability distribution function like a Fermi integral and u resp. υ have to be interpreted as chemical resp. electrostatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMANN, H.Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problemsin: Function spaces, differential operators and nonlinear analysis (H. -J. Schmeisser, H. Triebel, eds.), B. G. Teubner Verlagsgesellschaft, Teubner-Texte Math.133Stuttgart 1993, 9–126.

    Google Scholar 

  2. ALT, H. W. and LUCKHAUS, S.Quasilinear elliptic-parabolic differential equationsMath. Z.183(1983), 311–341.

    Article  MathSciNet  MATH  Google Scholar 

  3. BéNILAAN, PH. and Wittbold, P.On mild and weak solutions of elliptic-parabolic systemsAdv. Differ. Equ. vol.1(1996), 1053–1073.

    Google Scholar 

  4. GAJEWSKI, H.On a variant of monotonicity and its application to differential equationsNonlinear Anal. TMA, vol.22(1994), 73–80.

    MathSciNet  MATH  Google Scholar 

  5. GAJEWSKI, H. and GROGER, K.Reaction-diffusion processes of electrically charged speciesMath. Nachr.177(1996),109–130.

    Article  MathSciNet  MATH  Google Scholar 

  6. GAJEWSKI, H. and ZACIIARIAS, K.Global behavior of a reaction-diffusion system modelling chemotaxisMath. Nachr.195(1998), 77–114.

    Article  MathSciNet  MATH  Google Scholar 

  7. GAJEWSKI, H. and ZACHARIAS, K.On a nononlocal phase separation modelPreprint 656 WIAS Berlin, 2001, Jnl. Math. Anal. Appl. (to appear).

    Google Scholar 

  8. GAJEWSKI, H. and SKRYPNIK, I. V.To the uniqueness problem for nonlinear elliptic equationsNonlinear Analysis 52 (2003), 291–304.

    Article  MathSciNet  MATH  Google Scholar 

  9. GAJEWSKI, H. and SKRYPNIK, I.V.On the uniqueness of solutions for nonlinear parabolic equationsPreprint No. 658, WIAS (2001), Discrete and Continuous Dynamical Systems 9 (2003).

    Google Scholar 

  10. LADYZHENSKAYA, O. A. and URALTSEVA, N.N. Linear and quasilinear elliptic equations NaukaMoscow 1973 (Russian).

    Google Scholar 

  11. LADYZHENSKAJA, O. A., SOLONNIKOV, V. A. and URALTSEVA, N. N.Linear and quasilinear equations of parabolic typTransl. Math. Monographs, A.M.S. Providence, vol. 23 (1994).

    Google Scholar 

  12. OTTO, F.L1 -contraction and uniqueness for quasilinear elliptic-parabolic equationsC.R. Acad. Sci. Paris318Serie 1 (1995), 1005–1010.

    MathSciNet  Google Scholar 

  13. SKRYPNIK, I. V., Methods for analysis of nonlinear elliptic boundary value problems, Transi. Math. Monographs, A.M.S. Providence, vol.139(1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Gajewski, H., Skrypnik, I.V. (2003). On the uniqueness of solutions for nonlinear elliptic-parabolic equations. In: Arendt, W., Brézis, H., Pierre, M. (eds) Nonlinear Evolution Equations and Related Topics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7924-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7924-8_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7107-4

  • Online ISBN: 978-3-0348-7924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics