Skip to main content

New Results at Mayon, Philippines, from a Joint Inversion of Gravity and Deformation Measurements

  • Chapter
Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 161 Accesses

Abstract

In this paper, we detail the combination of the genetic algorithm (GA) inversion technique with the elastic-gravitational model originally developed by Rundle and subsequently refined by Fernández and others. A sensitivity analysis is performed for the joint inversion of deformation and gravity to each of the model parameters, illustrating the importance of proper identification of both the strengths and limitations of any source model inversion, and this technique in particular. There is a practical comparison of the theoretical results with the inversion of geodetic data observed at the Mayon volcano in the Philippines, where there are gravity changes without significant deformation, after the 1993 eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano, S. E., Sandoval, T., and Toledo, R. (2001), Groundwater at Mayon volcano, EOS Trans., AGU, 82, 47.

    Google Scholar 

  • Berrino, B. and Corrado, G. (1991), Gravity changes and volcanic dynamics, Cahier du Centre Europeén de Geodynamique et de Seismologie 4, Proc. Workshop: Geodynamical Instrumentation Applied to Volcanic Areas, Oct. 1–3, 1990, Walferdange, Luxembourg, 1–3.

    Google Scholar 

  • Battaglia, M., Roberts, C., and Segall, P. (1999), Magma Intrusion beneath Long Valley Caldera Confirmed by Temporal Changes in Gravity, Science 285, 2119–2122.

    Article  Google Scholar 

  • Battaglia, M. and Segall, P. (2004), The interpretation of Gravity Changes and Crustal Deformation in Active Volcanic Areas, Pure Appl. Geophys. 161, 1453–1467.

    Google Scholar 

  • Bevington, P. R. and Robinson, D. K., Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, Inc., N.Y. 1992).

    Google Scholar 

  • Bhattacharyya, J., Sheehan, A. F., Tiampo, K. F., and Rundle, J. B. (1998), Using Genetic Algorithms to Model Regional Waveforms for Crustal Structure in the Western United States, BSSA 89, 202–214.

    Google Scholar 

  • Billings, S., Kennett, B., and Sambridge, M. (1994), Hypocenter Location: Genetic Algorithms Incorporating Problem Specific Information, Geophys. J. Int. 118, 693–706.

    Google Scholar 

  • Bonafede, M. (1991), Hot Fluid Migration, an Efficient Source of Ground Deformation: Application to the 1982–1985 Crisis at Campi Flegrei-Italy, J. Volcanol. Geoth. Res. 48, 1982–1985.

    Article  Google Scholar 

  • Bonafede, M. and Mazzanti, M. (1998), Modeling Gravity Variations Consistent with Ground Deformation in the Campi Flegrei Caldera (Italy), J. Volcanol. Geoth. Res. 81, 137–157.

    Article  Google Scholar 

  • Boschetti, F., Dentith, M. C., and List, R. D. (1996), Inversion of Seismic Refraction Data Using Genetic Algorithms, Geophys. 61, 1715–1727.

    Article  Google Scholar 

  • Brown, G. C. and Rymer, H. (1991), Microgravity Monitoring at Active Volcanoes, A Review of Theory and Practice, Cahiers du Centre Européen de Geodynamique et Seismologie 4, 279–304.

    Google Scholar 

  • Charco et al. (2004) New Results at Mayon, Philippines, from a Joint Inversion of Gravity and Deformation Measurements, Pure. Appl. Geophys. 161, 1433–1452.

    Google Scholar 

  • Curtis, A., Dost, B., Trampert, J., and Snieder, R. (1995), Shear-wave Velocity Structure Beneath Eurasia from Surface Wave Group and Phase Velocities in an Inverse Problem Reconditioned Using the Genetic Algorithm, EOS Trans., AGU 76, 386.

    Google Scholar 

  • Davis, P.M. (1986), Surface Deformation due to Inflation of an Arbitrarily Oriented Triaxial Ellipsoidal Cavity in an Elastic Half-space, with Reference to Kilauea Volcano, Hawaii, J. Geophys. Res. 91, 7429–7438.

    Article  Google Scholar 

  • DE Natale, G., Petrazzuoli, S. M., and Pingue, F. (1997), The Effect of Collapse Structure on Ground Deformations in Calderas, Geophys. Res. Lett. 24, 1555–1558.

    Google Scholar 

  • Delaney, P. T. and Mitigue, D. F. (1994), Volume of Magma Accumulation or Withdrawal Estimated from Surface Uplift or Subsidence, with Application to the 1960 Collapse of Kilauea Volcano, Bull. Volcanol. 56, 417–424.

    Article  Google Scholar 

  • Dvorak, J. J. and Dzurisin, D. (1997), Volcano Geodesy, the Search for Magma Reservoirs and the Formation of Eruptive Vents, Rev. Geophys. 35, 343–384.

    Article  Google Scholar 

  • Dzurisin, D. (2000), Volcano Geodesy: Challenges and Opportunities for the 21st century, Phil. Trans. Roy. Soc. Lond. A 358, 1547–1566.

    Article  Google Scholar 

  • Dzurisin, D., WicKs, C. Jr., and Thatcher, W. (1999), Renewed Uplift at the Yellowstone Caldera Measured by Leveling Surveys and Satellite Radar Interferometry, Bull. Volcanol. 61, 349–355.

    Article  Google Scholar 

  • Eggers, A. A. (1987), Residual Gravity Changes and Eruption Magnitudes, J. Volcanol. Geoth. Res. 33, 201–216.

    Article  Google Scholar 

  • Fernández, J., Carrasco, J. M., Rundle, J. B., and Araña, P. (1999), Geodetic Methods for Detecting Volcanic Unrest, A Theoretical Approach, Bull. Volcanol. 60, 534–544.

    Article  Google Scholar 

  • Fernández, J., Charco, M., Tiampo, K. F., Jentzsch, G., and Rundle, J. B. (2001a), Joint Interpretation of Displacement and Gravity Data in Volcanic Areas. A Test Example: Long Valley Caldera, California, Geophys. Res. Lett. 28, 1063–1066.

    Google Scholar 

  • Fernández, J. and Rundle, J. B. (1994a), Gravity Changes and Deformation due to a Magmatic Intrusion in a Two-layered Crustal Model, J. Geophys. Res. 99, 2737–2746.

    Article  Google Scholar 

  • Fernández, J., Rundle, J. B., Granell, R., and Yu, T.T. (1997), Programs to Compute Deformation due to a Magma Intrusion in Elastic-gravitational Layered Earth Models, Comp. and Geosci. 23, 231–249.

    Article  Google Scholar 

  • Fernández, J., Tiampo, K. F., Jentzsch, G., Charco, M., and Rundle, J. B. (2001b), Inflation Or Deflation? New Results for Mayon Volcano Applying Elastic-gravitational Modeling, Geophys. Res. Lett. 28, 2349–2352.

    Google Scholar 

  • Fernández, J. and Rundle, J. B. (1994b), FORTRAN Program to Compute Displacement, Potential and Gravity Changes Resulting from a Magma Intrusion in a Multilayered Earth Model, Computers and Geosciences, 20, 461–510.

    Article  Google Scholar 

  • Folch, A., Fernández, J., Rundle, J. B., and Marti, J. (2000), Ground Deformation in a Viscoelastic Medium Composed of a Layer Overlying a Half-space: A Comparison between Point and Extended Sources, Geophys. J. Int. 140, 37–50.

    Google Scholar 

  • Gaeta, F. S., DE Natale, G., and Rossano, S. (1998), Genesis and Evolution of Unrest Episodes at Campi Flegrei Caldera, the Role of the Thermal Fluid-Dynamical Processes in the Geothermal System, J. Geophys. Res. 103, 20,921–20,933.

    Article  Google Scholar 

  • Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning (Addison Wesley, Reading, MA 1989).

    Google Scholar 

  • Holland, J. H., Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA 1975).

    Google Scholar 

  • Jahr, T., Jentzsch, G., Punongbayan, R. S., Schreiber, U., Seeber, G., Völksen, C., and Weise, A. (1998), Mayon Volcano, Philippines: Improvement of hazard assessment by microgravity and GPS?, Proc. Int. Symp. On Current Crustal Movement and Hazard Assessment (IUGG, IAG), Wuhan. Seismological Press, Beijing, 599–608.

    Google Scholar 

  • Jentzsch, G., Haase, O., Kroner, C., Seeber, G., and Winter, U. (2001a), Mayon Volcano, Philippines: Some Insights into Stress Balance, J. Volcanol. Geotherm. Res. 109, 205–217.

    Article  Google Scholar 

  • Jentzsch, G., Punongbayan, R. S., Schreiber, U., Seeber, G., Volksen, C., and Weise, A. (2001b), Mayon Volcano, Philippines: Change of Monitoring Strategy after Microgravity and GPS Measurements, J. Volcanol. Geotherm. Res. 109, 219–234.

    Article  Google Scholar 

  • Jin, S. and Madariaga, R. (1993), Background Velocity Inversion with a Genetic Algorithm, Geophys. Res. Lett. 20, 93–96.

    Google Scholar 

  • Kidd, M., Yuen, D. A., Cadek, O., and Nakakuki, T. (1998), Mantle Viscosity Derived by Genetic Algorithm Using Oceanic Geoid and Seismic Tomography for Whole-mantle versus Blocked flow Situations, Phys. Earth Plan. Int. 107, 307–326.

    Google Scholar 

  • Kisslinger, C. (1975), Processes during the Matsushiro, Japan Earthquake Swarm as Revealed by Leveling, Gravity, and Spring flow Observations, Geology 3, 57–62.

    Article  Google Scholar 

  • Langbetn, J., Dzurisin, D., Marshall, G., Stein, R., and Rundle, J. (1995), Shallow and Peripheral Volcanic Sources of Inflation Revealed by Modeling Two-color Geodimeter and Leveling Data from Long Valley Caldera, California, 1988–1992, J. Geophys. Res. 100, 12,1988–1992,495.

    Google Scholar 

  • Massonet, D. and Feigl, K. L. (1998), Radar Interferometry and its Application to Changes in the Earths Surface, Rev. Geophys. 36, 441–500.

    Article  Google Scholar 

  • Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, New York, NY 1992).

    Google Scholar 

  • Mogi, K. (1958), Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them, Bull. Earth. Res. Inst. Tokyo 36, 99–134.

    Google Scholar 

  • Neves, F. A., Singh, S. C., and Priestley, K. F. (1996), Velocity Structure of Upper-mantle Transition Zones beneath Central Eurasia from Seismic Inversion Using Genetic Algorithms, Geophys. 22, 523–552.

    Google Scholar 

  • Newhall, C.G (1979), Temporal Variation in the Lavas of Mayon Volcano, Philippines, J. Volanol. Geoth. Res. 6, 61–83.

    Article  Google Scholar 

  • Pritchard, M. E. and Simons, M. (2002), A Satellite Geodetic Survey of Large-scale Deformation of Volcanic Centers in the Central Andes, Nature 418, 167–171.

    Article  Google Scholar 

  • Rundle, J. B. (1980), Static Elastic-gravitational Deformation of a Layered Half-space by Point Couple Sources, J. Geophys. Res. 85, 5355–5363.

    Article  Google Scholar 

  • Rundle, J. B. (1982), Deformation, Gravity and Potential Changes due to Volcanic Loading of the Crust, J. Geophys. Res. 87, 10,729–10,744.

    Google Scholar 

  • Rymer, H., Microgravity Monitoring, In Monitoring and Mitigation of Volcano Hazards (Springer 1996) pp. 169–197.

    Book  Google Scholar 

  • Rymer, H., Murray, J. B., Brown, G. C., Ferruci, F., and MCGUIRE, W. J. (1993), Mechanism of Magma Eruption and Emplacement at Mt. Etna between 1989 and 1992, Nature 361, 439–441.

    Article  Google Scholar 

  • Rymer, H. and Williams-Jones, G. (2000), Volcanic Eruption Prediction, Magma Chamber Physics from gravity and Deformation Measurements, Geophys. Res. Lett. 27, 2389–2392.

    Google Scholar 

  • Stoffa, P. L. and Sen, M. K. (1991), Nonlinear Multiparameter Optimization Using Genetic Algorithms, Inversion of Plane-wave Seismograms, Geophys. 56, 1794–1810.

    Article  Google Scholar 

  • Taylor, J. R., An Introduction to Error Analysis (University Science Books, USA 1982) pp. 225–230.

    Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Fernández, J., and Langbein, J. (2000), Spherical and Ellipsoidal Volcanic Sources at Long Valley Caldera, California Using a Genetic Algorithm Inversion Technique, J. Volcanol.Geotherm. Res. 102, 189–206.

    Article  Google Scholar 

  • Völksen, C. and Seeber, G. (1995), Establishment of a GPS-based Control Network at Mayon Volcano, Cahiers du Centre Européen de Geodynamique et de Seismologie 8, 99–113.

    Google Scholar 

  • Watanabe, H., Okubg, S., Sakashita, S., and Maekawa, T. (1998), Drain Back Process of Basaltic Magma in the Summit Conduit Detected by Microgravity Observation at Izu-Oshima Volcano, Japan. Geophys. Res. Lett. 25, 2865–2868.

    Google Scholar 

  • Winchester, J. P., Creager, K. C., and Mcsweeney, T. J. (1993), Better Alignment through Better Breeding: Phase Alignment Using Genetic Algorithms and Cross-correlation Techniques, EOS, AGU 74, 394.

    Google Scholar 

  • Wright, A. H., Genetic algorithms for real parameter optimization. In Foundations of Genetic Algorithms (Morgan Kaufmann Publishers, San Mateo, CA 1991).

    Google Scholar 

  • Yang, X. M., Davis, P. M., and Dieterich, J. H. (1988), Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half-space as a Model for Volcanic Stressing, J. Geophys. Res. 93, 4249–4257.

    Article  Google Scholar 

  • Yu, T. T., Fernández, J., and Rundle, J. B. (1998), Inverting the Parameters of an Earthquake-ruptured Fault with a Genetic Algorithm, Comp. and Geo. 24, 173–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Tiampo, K.F., Fernández, J., Jentzsch, G., Charco, M., Rundle, J.B. (2004). New Results at Mayon, Philippines, from a Joint Inversion of Gravity and Deformation Measurements. In: Fernández, J. (eds) Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7897-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7897-5_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7044-2

  • Online ISBN: 978-3-0348-7897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics