Skip to main content

Cell-cell contact in chronic inflammation: the importance to cytokine regulation in tissue destruction and repair

  • Chapter
Cytokines and Joint Injury

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

In many chronic diseases, inflammation is characterized by the influx into the target tissue of migratory cells such as T and B lymphocytes, dendritic cells, neutrophils and mononuclear phagocytes. This influx of inflammatory cells in the target tissue is associated with the proliferation of invading and resident cells and frequently with destruction and remodeling of the extracellular matrix. In the joint structures, the destruction of the organic phase is due to proteases (mainly MMP whose activity is controlled by specific inhibitors) and the resorption of the inorganic phase of bone, mainly due to the action of the receptor activator of NF-kB and its ligand (RANK-RANKL) and prostanoids. The expression of these proteases and their inhibitors is regulated by different types of stimuli, including soluble factors (i.e., cytokines, hormones), contact with extracellular matrix components and direct cellular interactions [1-2]. In pathologic conditions, the production of cytokines and MMP by infiltrating and resident tissue cells escapes regulatory mechanisms. The activity of proinflammatory cytokines is counterbalanced by numerous mechanisms of which cytokine inhibitors — IL-1 receptor antagonist (IL-1Ra), TNF soluble receptors (TNFsR) — and tissue inhibitor of MMP (TIMP) are examples. It is generally acknowledged that the imbalance between cytokines and their respective inhibitors is responsible for the persistence of chronic inflammatory conditions and maybe even necessary for their initiation. There is now considerable evidence that cytokines such as TNFα and IL-1 are involved in many diseases resulting in tissue destruction. This has been demonstrated by human clinical trials in rheumatoid arthritis (RA) (for review see [4-8]). Cytokine blockade in the clinic has also proved useful in many other diseases including juvenile idiopathic arthritis, Crohn’s disease, spondyloarthropathy, vasculitis and psoriasis [9-16]. The above cytokines are also involved in the pathogenesis of several other diseases including multiple sclerosis (MS) [17, 18], systemic lupus erythematosus (SLE) [19, 20], and atherosclerosis [21, 22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birkedal-Hansen H (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7: 728–735

    Article  PubMed  CAS  Google Scholar 

  2. Burger D (2000) Cell contact-mediated signaling of monocytes by stimulated T cells: a major pathway for cytokine induction. Eur Cytokine Netw 11: 346–353

    PubMed  CAS  Google Scholar 

  3. Dayer JM, Burger D (1999) Cytokines and direct cell contact in synovitis: relevance to therapeutic intervention. Arthritis Res 1: 17–20

    Article  PubMed  CAS  Google Scholar 

  4. Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14: 397–440

    Article  PubMed  CAS  Google Scholar 

  5. Harris ED (1997) Cytokines, lymphokines, growth factors, and chemokines. In: ED Harris (ed): Rheumatoid arthritis. W.B. Saunders, Philadelphia, 105–125

    Google Scholar 

  6. Dayer JM, Arend WP (1997) Cytokines and growth factors. In: WN Kelley, ED Jr Harris, S Ruddy, CS Sledge (eds): Textbook of rheumatology. W.B. Saunders, Philadelphia, 267–286

    Google Scholar 

  7. Dayer JM, Feige U, Edwards III CK, Burger D (2001) Anti-interleukin-1 therapy in rheumatic diseases. Curr Opin Rheumatol 13: 170–176

    Article  PubMed  CAS  Google Scholar 

  8. Maini RN, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M et al (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354: 1932–1939

    Article  PubMed  CAS  Google Scholar 

  9. Bartolucci P, Ramanoelina J, Cohen P, Mahr A, Godmer P, Le Hello C, Guillevin L (2002) Efficacy of the anti-TNFα antibody infliximab against refractory systemic vasculitides: an open pilot study on 10 patients. Rheumatology (Oxford) 41: 1126–1132

    Article  CAS  Google Scholar 

  10. Lorenz HM, Kalden JR (2002) Perspectives for TNFα-targeting therapies. Arthritis Res 4 (Suppl 3): S17–S24

    Article  PubMed  Google Scholar 

  11. Kalden JR (2002) Emerging role of anti-tumor necrosis factor therapy in rheumatic diseases. Arthritis Res 4 (Suppl 2): S34–S40

    Article  PubMed  Google Scholar 

  12. Brandt J, Haibel H, Reddig J, Sieper J, Braun J (2002) Successful short term treatment of severe undifferentiated spondyloarthropathy with the anti-tumor necrosis factor-alpha monoclonal antibody infliximab. J Rheumatol 29: 118–122

    PubMed  CAS  Google Scholar 

  13. Wollina U, Konrad H (2002) Treatment of recalcitrant psoriatic arthritis with anti-tumor necrosis factor-alpha antibody. J Eur Acad Dermatol Venereol 16: 127–129

    Article  PubMed  CAS  Google Scholar 

  14. Sfikakis PP (2002) Behcet’s disease: a new target for anti-tumour necrosis factor treatment. Ann Rheum Dis 61 (Suppl 2): ii51-ii53

    PubMed  Google Scholar 

  15. Lee RZ, Veale DJ (2002) Management of spondyloarthropathy: new pharmacological treatment options. Drugs 62: 2349–2359

    Article  PubMed  CAS  Google Scholar 

  16. Murray KJ, Lovell DJ (2002) Advanced therapy for juvenile arthritis. Best Pract Res Clin Rheumatol 16: 361–378

    PubMed  CAS  Google Scholar 

  17. Robinson WH, Genovese MC, Moreland LW (2001) Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum 44: 1977–1983

    Article  PubMed  CAS  Google Scholar 

  18. Skurkovich S, Boiko A, Beliaeva I, Buglak A, Alekseeva T, Smirnova N, Kulakova O, Tchechonin V, Gurova O, Deomina T et al (2001) Randomized study of antibodies to IFNγ and TNFα in secondary progressive multiple sclerosis. Mult Scler 7: 277–284

    PubMed  CAS  Google Scholar 

  19. Dean GS, Tyrrell-Price J, Crawley E, Isenberg DA (2000) Cytokines and systemic lupus erythematosus. Ann Rheum Dis 59: 243–251

    Article  PubMed  CAS  Google Scholar 

  20. Segal R, Dayan M, Zinger H, Mozes E (2001) Suppression of experimental systemic lupus erythematosus (SLE) in mice via TNF inhibition by an anti-TNFα monoclonal antibody and by pentoxiphylline. Lupus 10: 23–31

    Article  PubMed  CAS  Google Scholar 

  21. Kaul D (2001) Molecular link between cholesterol, cytokines and atherosclerosis. Mol Cell Biochem 219: 65–71

    Article  CAS  Google Scholar 

  22. Teplyakov AI, Pryschepova EV, Kruchinsky NG, Chegerova TI (2000) Cytokines and soluble cell adhesion molecules. Possible markers of inflammatory response in atherosclerosis. Ann NY Acad Sci 902: 320–322

    Article  PubMed  CAS  Google Scholar 

  23. Dinarello CA (2000) IL-1α. In: JJ Oppenheim, M Feldmann (eds): Cytokine feference. Academic Press, London, 307–318

    Google Scholar 

  24. Dinarello CA (2000) IL-1β. In: JJ Oppenheim, M Feldmann (eds): Cytokine reference. Academic Press, London, 351–374

    Google Scholar 

  25. Aggarwal BB, Samanta A, Feldmann M (2000) TNFα. In: JJ Oppenheim, M Feldmann (eds): Cytokine reference. Academic Press, London, 413–434

    Google Scholar 

  26. Sims JE (2002) IL-1 and IL-18 receptors, and their extended family. Curr Opin Immunol 14: 117–122

    Article  PubMed  CAS  Google Scholar 

  27. Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P (2001) Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol 22: 328–336

    Article  PubMed  CAS  Google Scholar 

  28. Burger D, Dayer JM (2000) IL-1Ra. In: JJ Oppenheim, M Feldmann (eds): Cytokine reference. Academic Press, London, 319–336

    Google Scholar 

  29. Burger D, Chicheportiche R, Giri JG, Dayer JM (1995) The inhibitory activity of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 soluble receptor and hindered by type I interleukin-1 soluble receptor. J Clin Invest 96: 38–41

    Article  PubMed  CAS  Google Scholar 

  30. Aggarwal BB, Samanta A, Feldmann M (2000) TNF receptors. In: JJ Oppenheim, M Feldmann (eds): Cytokine reference. Academic Press, London, 1619–1632

    Google Scholar 

  31. Kahle P, Saal JG, Schaudt K, Zacher J, Fritz P, Pawelec G (1992) Determination of cytokines in synovial fluids: correlation with diagnosis and histomorphological characteristics of synovial tissue. Ann Rheum Dis 51: 731–734

    Article  PubMed  CAS  Google Scholar 

  32. Nouri AM, Panayi GS, Goodman SM (1984) Cytokines and the chronic inflammation of rheumatic disease. Clin Exp Immunol 55: 295–302

    PubMed  CAS  Google Scholar 

  33. Firestein GS, Alvaro-Gracia JM, Maki R (1990) Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 144: 3347–3353

    PubMed  CAS  Google Scholar 

  34. Seitz M, Loetscher P, Dewald B, Towbin H, Rordorf C, Gallati H, Gerber NJ (1996) Interleukin-1 (IL-1) receptor antagonist, soluble tumor necrosis factor receptors, IL-1β, and IL-8: Markers of remission in rheumatoid arthritis during treatment with methotrexate. J Rheumatol 23: 1512–1516

    PubMed  CAS  Google Scholar 

  35. Gabay C, Gay Crosier F, Roux-Lombard P, Meyer O, Mainetti C, Guerne PA, Vischer T, Dayer JM (1994) Elevated serum levels of interleukin-1 receptor antagonist in polymyositis/dermatomyositis. A biologic marker of disease activity with a possible role in the lack of acute-phase protein response. Arthritis Rheum 37: 1744–1751

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki H, Takemura H, Kashiwagi H (1995) Interleukin-1 receptor antagonist in patients with active systemic lupus erythematosus. Enhanced production by monocytes and correlation with disease activity. Arthritis Rheum 38: 1055–1059

    Article  PubMed  CAS  Google Scholar 

  37. Heilig B, Wermann M, Gallati H, Brockhaus M, Berke B, Egen O, Pezutto A, Hunstein W (1992) Elevated TNF receptor plasma concentrations in patients with rheumatoid arthritis. Clin Invest 70: 22–27

    Article  CAS  Google Scholar 

  38. Aderka D, Wysenbeek A, Engelmann H, Cope AP, Brennan FM, Molad Y, Hornik V, Levo Y, Maini RN, Feldmann M et al (1993) Correlation between serum levels of soluble tumor necrosis factor receptor and disease activity in systemic lupus erythematosus. Arthritis Rheum 36: 1111–1120

    Article  PubMed  CAS  Google Scholar 

  39. van der Poll T, van Deventer SJ, Hack CE, Wolbink GJ, Aarden LA, Buller HR, ten Cate JW (1992) Effects on leukocytes after injection of tumor necrosis factor into healthy humans. Blood 79: 693–698

    PubMed  Google Scholar 

  40. Steiner G, Studnicka Benke A, Witzmann G, Hofler E, Smolen J (1995) Soluble receptors for tumor necrosis factor and interleukin-2 in serum and synovial fluid of patients with rheumatoid arthritis, reactive arthritis and osteoarthritis. J Rheumatol 22: 406–412

    PubMed  CAS  Google Scholar 

  41. Roux-Lombard P, Punzi L, Hasler F, Bas S, Todesco S, Gallati H, Guerne PA, Dayer JM (1993) Soluble tumor necrosis factor receptors in human inflammatory synovial fluids. Arthritis Rheum 36: 485–489

    Article  PubMed  CAS  Google Scholar 

  42. Hansen MB, Andersen V, Rohde K, Florescu A, Ross C, Svenson M, Bendtzen K (1995) Cytokine autoantibodies in rheumatoid arthritis. Scand J Rheumatol 24: 197–203

    Article  PubMed  CAS  Google Scholar 

  43. Jouvenne P, Fossiez F, Garrone P, Djossou O, Banchereau J, Miossec P (1996) Increased incidence of neutralizing autoantibodies against interleukin-1 alpha (IL-1α) in nondestructive chronic polyarthritis. J Clin Immunol 16: 283–290

    Article  PubMed  CAS  Google Scholar 

  44. Gabay C, Marinova-Mutafchieva L, Williams RO, Gigley JP, Butler DM, Feldmann M, Arend WP (2001) Increased production of intracellular interleukin-1 receptor antagonist type I in the synovium of mice with collagen-induced arthritis: a possible role in the resolution of arthritis. Arthritis Rheum 44: 451–462

    Article  PubMed  CAS  Google Scholar 

  45. Arend WP, Dayer JM (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 38: 151–160

    Article  PubMed  CAS  Google Scholar 

  46. Ulfgren AK, Grondal L, Lindblad S, Khademi M, Johnell O, Klareskog L, Andersson U (2000) Interindividual and intra-articular variation of proinflammatory cytokines in patients with rheumatoid arthritis: potential implications for treatment. Ann Rheum Dis 59: 439–447

    Article  PubMed  CAS  Google Scholar 

  47. Kimura N, Du RP, Mak TW (1987) Rearrangement and organization of T cell receptor gamma chain genes in human leukemic T cell lines. Eur J Immunol 17: 1653–1656

    Article  PubMed  CAS  Google Scholar 

  48. Harris ED (ed) (1997) Rheumatoid arthritis. W.B. Saunders, Philadelphia

    Google Scholar 

  49. Tak PP, Smeets TJM, Daha MR, Kluin PM, Meijers KAE, Brand R, Meinders AE, Breed-veld FC (1997) Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum 40: 217–225

    Article  PubMed  CAS  Google Scholar 

  50. Smeets TJ, Kraan MC, Galjaard S, Youssef PP, Smith MD, Tak PP (2001) Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA. Ann Rheum Dis 60: 561–565

    Article  PubMed  CAS  Google Scholar 

  51. Davis LS, Geppert TD, Meek K, Oppenheimer-Marks N, Lipsky PE (1997) Immune and inflammatory responses. In: WN Kelley, EDJr Harris, S Ruddy, CS Sledge (eds): Textbook of rheumatology. W.B. Saunders, Philadelphia, 95–127

    Google Scholar 

  52. Schulze-Koops H, Kalden JR (2001) The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract Res Clin Rheumatol 15: 677–691

    Article  PubMed  CAS  Google Scholar 

  53. Elliott CL, El Touny SY, Filipi ML, Healey KM, Leuschen MP (2001) Interferon β1a treatment modulates TH1 expression in gammadelta + T cells from relapsing-remitting multiple sclerosis patients. J Clin Immunol 21: 200–209

    Article  PubMed  CAS  Google Scholar 

  54. Laman JD, Thompson EJ, Kappos L (1998) Balancing the Th1/Th2 concept in multiple sclerosis. Immunol Today 19: 489–490

    Article  PubMed  CAS  Google Scholar 

  55. Wong WM, Vakis SA, Ayre KR, Ellwood CN, Howell WM, Tutt AL, Cawley MI, Smith JL (2000) Rheumatoid arthritis T cells produce Th1 cytokines in response to stimulation with a novel trispecific antibody directed against CD2, CD3, and CD28. Scand J Rheumatol 29: 282–287

    Article  PubMed  CAS  Google Scholar 

  56. McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med 3: 189–195

    Article  PubMed  CAS  Google Scholar 

  57. Parry SL, Sebbag M, Feldmann M, Brennan FM (1997) Contact with T cells modulates monocyte IL-10 production. Role of T cell membrane TNFα. J Immunol 158: 3673–3681

    PubMed  CAS  Google Scholar 

  58. Sebbag M, Parry SL, Brennan FM, Feldmann M (1997) Cytokine stimulation of T lymphocytes regulates their capacity to induce monocyte production of tumor necrosis factor-alpha, but not interleukin-10: Possible relevance to pathophysiology of rheumatoid arthritis. Eur J Immunol 27: 624–632

    Article  PubMed  CAS  Google Scholar 

  59. Avice MN, Sarfati M, Triebel F, Delespesse G, Demeure CE (1999) Lymphocyte activation gene-3, a MHC class II ligand expressed on activated T cells, stimulates TNFα and ILa production by monocytes and dendritic cells. J Immunol 162: 2748–2753

    PubMed  CAS  Google Scholar 

  60. Avice MN, Demeure CE, Delespesse G, Rubio M, Armant M, Sarfati M (1998) IL-15 promotes IL-12 production by human monocytes via T cell-dependent contact and may contribute to IL-12-mediated IFNy secretion by CD4+T cells in the absence of TCR ligation. J Immunol 161: 3408–3415

    PubMed  CAS  Google Scholar 

  61. Chabot S, Charlet D, Wilson TL, Yong VW (2001) Cytokine production consequent to T cell-microglia interaction: the PMA/IFNy-treated U937 cells display similarities to human microglia. J Neurosci Methods 105: 111–120

    Article  PubMed  CAS  Google Scholar 

  62. Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM (2001) T cell activation in rheumatoid synovium is B cell dependent. J Immunol 167: 4710–4718

    PubMed  CAS  Google Scholar 

  63. Weaver CT, Unanue ER (1986) T cell induction of membrane IL-1 on macrophages. J Immunol 137: 3868–3873

    PubMed  CAS  Google Scholar 

  64. Weaver CT, Duncan LM, Unanue ER (1989) T cell induction of macrophage IL-1 during antigen presentation: characterization of a lymphokine mediator and comparison of Th1 and Th2 subsets. J Immunol 142: 3469–3476

    PubMed  CAS  Google Scholar 

  65. Vey E, Zhang JH, Dayer J-M (1992) IFNy and 1,25(OH)2D3 induce on THP-1 cells distinct patterns of cell surface antigen expression, cytokine production, and responsiveness to contact with activated T cells. J Immunol 149: 2040–2046

    PubMed  CAS  Google Scholar 

  66. Isler P, Vey E, Zhang JH, Dayer JM (1993) Cell surface glycoproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69. Eur Cytokine Netw 4: 15–23

    PubMed  CAS  Google Scholar 

  67. Landis CB, Friedman ML, Fisher RI, Ellis TM (1991) Induction of human monocyte IL-1 mRNA and secretion during anti-CD3 mitogenesis requires two distinct T cell-derived signals. J Immunol 146: 128–135

    PubMed  CAS  Google Scholar 

  68. Li JM, Isler P, Dayer JM, Burger D (1995) Contact-dependent stimulation of monocytic cells and neutrophils by stimulated human T cell clones. Immunology 84: 571–576

    PubMed  CAS  Google Scholar 

  69. Miltenburg AMM, Lacraz S, Welgus HG, Dayer JM (1995) Immobilized anti-CD3 antibody activates T cell clones to induce the production of interstitial collagenase, but not tissue inhibitor of metalloproteinases, in monocytic THP-1 cells and dermal fibroblasts. J Immunol 154: 2655–2667

    PubMed  CAS  Google Scholar 

  70. Chizzolini C, Chicheportiche R, Burger D, Dayer JM (1997) Human Th1 cells preferentially induce interleukin (IL)-1 beta while Th2 cells induce IL-1 receptor antagonist production upon cell/cell contact with monocytes. Eur J Immunol 27: 171–177

    Article  PubMed  CAS  Google Scholar 

  71. Brennan FM, Hayes AL, Ciesielski CJ, Green P, Foxwell BM, Feldmann M (2002) Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells: involvement of phosphatidylinositol 3-kinase and nuclear factor KB pathways in tumor necrosis factor alpha production in rheumatoid arthritis. Arthritis Rheum 46: 31–41

    Article  PubMed  CAS  Google Scholar 

  72. Ribbens C, Dayer JM, Chizzolini C (2000) CD40–CD40 ligand (CD154) engagement is required but may not be sufficient for human T helper 1 cell induction of interleukin-2- or interleukin-15-driven, contact-dependent, interleukin-41 production by monocytes. Immunology 99: 279–286

    Article  PubMed  CAS  Google Scholar 

  73. Lacraz S, Isler P, Vey E, Welgus HG, Dayer JM (1994) Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem 269: 22027–22033

    PubMed  CAS  Google Scholar 

  74. Vey E, Burger D, Dayer JM (1996) Expression and cleavage of tumor necrosis factor-alpha and tumor necrosis factor receptors by human monocytic cell lines upon direct contact with stimulated T cells. Eur J Immunol 26: 2404–2409

    Article  PubMed  CAS  Google Scholar 

  75. Vey E, Dayer JM, Burger D (1997) Direct contact with stimulated T cells induces the expression of IL-1β and IL-1 receptor antagonist in human monocytes. Involvement of serine/threonine phosphatases in differential regulation. Cytokine 9: 480–487

    Article  PubMed  CAS  Google Scholar 

  76. Wagner DH, Stout RD, Suttles J (1994) Role of the CD40–CD40 ligand interaction in CD4(+) T cell contact-dependent activation of monocyte interleukin-1 synthesis. Eur J Immunol 24: 3148–3154

    Article  CAS  Google Scholar 

  77. Sypek JP, Matzilevich MM, Wyler DJ (1991) Th2 lymphocyte clone can activate macrophage antileishmanial defense by a lymphokine-independent mechanism in vitro and can augment parasite attribution in vivo. Cell Immunol 133: 178–186

    Article  CAS  Google Scholar 

  78. Sypek JP, Wyler DJ (1991) Antileishmanial defense in macrophages triggered by tumor necrosis factor expressed on CD4+ T lymphocyte plasma membrane. J Exp Med 174: 755–759

    Article  PubMed  CAS  Google Scholar 

  79. Grell M (1996) Tumor necrosis factor (TNF) receptors in cellular signaling of soluble and membrane-expressed TNF. J Inflamm 47: 8–17

    CAS  Google Scholar 

  80. Suttles J, Miller RW, Tao X, Stout RD (1994) T cells which do not express membrane tumor necrosis factor-alpha activate macrophage effector function by cell contact-dependent signaling of macrophage tumor necrosis factor-alpha production. Eur J Immunol 24: 1736–1742

    Article  PubMed  CAS  Google Scholar 

  81. Ware CF, Vanarsdale TL, Crowe PD, Browning JL (1995) The ligands and receptors of the lymphotoxin system. Curr Top Microbiol Immunol 198: 175–218

    Article  PubMed  CAS  Google Scholar 

  82. Murphy M, Walter BN, Pike-Nobile L, Fanger NA, Guyre PM, Browning JL, Ware CF, Epstein LB (1998) Expression of the lymphotoxin beta receptor on follicular stromal cells in human lymphoid tissues. Cell Death Differ 5: 497–505

    Article  PubMed  CAS  Google Scholar 

  83. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173

    Article  PubMed  CAS  Google Scholar 

  84. Gramaglia I, Mauri DN, Miner KT, Ware CF, Croft M (1999) Lymphotoxin cq3 is expressed on recently activated naive and Th1- like CD4 cells but is downregulated by IL-4 during Th2 differentiation. J Immunol 162: 1333–1338

    PubMed  CAS  Google Scholar 

  85. Malik N, Greenfield BW, Wahl AF, Kiener PA (1996) Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol 156: 3952–3960

    PubMed  CAS  Google Scholar 

  86. Stout RD, Suttles J, Xu J, Grewal IS, Flavell RA (1996) Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice. J Immunol 156: 8–11

    PubMed  CAS  Google Scholar 

  87. Gauchat J-F, Aubry J-P, Mazzei G, Life P, Jomotte T, Elson G, Bonnefoy J-Y (1993) Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett 315: 259–266

    Article  PubMed  CAS  Google Scholar 

  88. Armant M, Rubio M, Delespesse G, Sarfati M (1995) Soluble CD23 directly activates monocytes to contribute to the antigen-independent stimulation of resting T cells. J Immunol 155: 4868–4875

    PubMed  CAS  Google Scholar 

  89. Armant M, Ishihara H, Rubio M, Delespesse G, Sarfati M (1994) Regulation of cytokine production by soluble CD23: co-stimulation of interferon gamma secretion and triggering of tumor necrosis factor alpha release. J Exp Med 180: 1005–1011

    Article  PubMed  CAS  Google Scholar 

  90. Rezzonico R, Chicheportiche R, Imbert V, Dayer JM (2000) Engagement of CD11b and CD11c β2 integrin by antibodies or soluble CD23 induces IL-1β production on primary human monocytes through mitogen-activated protein kinase-dependent pathways. Blood 95: 3868–3877

    PubMed  CAS  Google Scholar 

  91. Rezzonico R, Imbert V, Chicheportiche R, Dayer JM (2001) Ligation of CD11b and CD11c β 2 integrins by antibodies or soluble CD23 induces macrophage inflammatory protein in (MIP-lα) and MIP-1β production in primary human monocytes through a pathway dependent on nuclear factor-kB. Blood 97: 2932–2940

    Article  PubMed  CAS  Google Scholar 

  92. Lecoanet-Henchoz S, Gauchat JF, Aubry JP, Graber P, Life P, Paul-Eugene N, Ferrua B, Corbi AL, Dugas B, Plater-Zyberk C et al (1995) CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 3: 119–125

    Article  PubMed  CAS  Google Scholar 

  93. Manie S, Kubar J, Limouse M, Ferrua B, Ticchioni M, Breittmayer JP, Peyron JF, Schaffar L, Rossi B (1993) CD3-stimulated Jurkat T cells mediate IL-1Β production in monocytic THP-1 cells: role of LFA-1 molecule and participation of CD69 T cell antigen. Eur Cytokine Netw 4: 7–13

    PubMed  CAS  Google Scholar 

  94. Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK, III, Roux-Lombard P, Burger D (2001) Apolipoprotein A-I inhibits the production of interleukin-1β and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97: 2381–2389

    Article  PubMed  CAS  Google Scholar 

  95. Park YB, Lee SK, Lee WK, Suh CH, Lee CW, Lee CH, Song CH, Lee J (1999) Lipid pro-files in untreated patients with rheumatoid arthritis. J Rheumatol 26: 1701–1704

    PubMed  CAS  Google Scholar 

  96. Doherty NS, Littman BH, Reilly K, Swindell AC, Buss JM, Anderson NL (1998) Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19: 355–363

    Article  PubMed  CAS  Google Scholar 

  97. Lakatos J, Harsagyi A (1988) Serum total, HDL, LDL cholesterol, and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem 21: 93–96

    Article  PubMed  CAS  Google Scholar 

  98. Ananth L, Prete PE, Kashyap ML (1993) Apolipoproteins A-I and B and cholesterol in synovial fluid of patients with rheumatoid arthritis. Metabolism 42: 803–806

    Article  PubMed  CAS  Google Scholar 

  99. Bresnihan B, Gogarty M, Burger D, Fitzgerald O, Dayer JM (2002) Localization of apolipoprotein A-1 at sites of T lymphocyte and macrophage contact in rheumatoid arthritis tissue. Rheumatology 41: 65 (abstract)

    Google Scholar 

  100. Tselepis AD, Elisaf M, Besis S, Karabina SA, Chapman MJ, Siamopoulou A (1999) Association of the inflammatory state in active juvenile rheumatoid arthritis with hypohigh-density lipoproteinemia and reduced lipoprotein-associated platelet-activating factor acetylhydrolase activity. Arthritis Rheum 42: 373–383

    Article  PubMed  CAS  Google Scholar 

  101. Lahita RG, Rivkin E, Cavanagh I, Romano P (1993) Low levels of total cholesterol, high-density lipoprotein, and apolipoprotein AI in association with anticardiolopin antibodies in patients with SLE. Arthritis Rheum 36: 1566–1574

    Article  PubMed  CAS  Google Scholar 

  102. Dinu AR, Merrill JT, Shen C, Antonov IV, Myones BL, Lahita RG (1998) Frequency of antibodies to the cholesterol transport protein apolipoprotein Al in patients with SLE. Lupus 7: 355–360

    Article  PubMed  CAS  Google Scholar 

  103. Sena A, Pedrosa R, Ferret-Sena V, Almeida R, Andrade ML, Morais MG, Couderc R (2000) Interferon Pla therapy changes lipoprotein metabolism in patients with multiple sclerosis. Clin Chem Lab Med 38: 209–213

    Article  PubMed  CAS  Google Scholar 

  104. Burger D, Dayer JM (2002) High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? Autoimmunity Rev 1: 111–117

    Article  CAS  Google Scholar 

  105. Fidge NH (1999) High-density lipoprotein receptors, binding proteins, and ligands. J Lipid Res 40: 187–201

    PubMed  CAS  Google Scholar 

  106. Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui S, Christensen EI, Aminoff M, de la Chapelle A, Krahe R et al (1999) The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat Med 5: 656–661

    Article  PubMed  CAS  Google Scholar 

  107. Chambenoit O, Hamon Y, Marguet D, Rigneault H, Rosseneu M, Chimini G (2001) Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J Biol Chem 276: 9955–9960

    Article  PubMed  CAS  Google Scholar 

  108. Bocharov AV, Vishnyakova TG, Baranova IN, Patterson AP, Eggerman TL (2001) Characterization of a 95 kDa high affinity human high density lipoprotein-binding protein. Biochemistry 40: 4407–4416

    Article  PubMed  CAS  Google Scholar 

  109. Jurgens G, Xu QB, Huber LA, Bock G, Howanietz H, Wick G, Traill KN (1989) Promotion of lymphocyte growth by high-density lipoproteins (HDL). Physiological significance of the HDL binding site. J Biol Chem 264: 8549–8556

    PubMed  CAS  Google Scholar 

  110. Xu Q, Buhler E, Steinmetz A, Schonitzer D, Bock G, Jurgens G, Wick G (1992) A highdensity-lipoprotein receptor appears to mediate the transfer of essential fatty acids from high-density lipoprotein to lymphocytes. Biochem J 287 (Pt 2): 395–401

    PubMed  CAS  Google Scholar 

  111. Williamson RA, Yea CM, Robson PA, Curnock AP, Gadher S, Hambleton AB, Woodward K, Bruneau JM, Hambleton P, Spinella Jaegle S et al (1996) Dihydroorotate dehydrogenase is a target for the biological effects of leflunomide. Transplant Proc 28: 3088–3091

    PubMed  CAS  Google Scholar 

  112. Tugwell P, Wells G, Strand V, Maetzel A, Bombardier C, Crawford B, Dorrier C, Thompson A (2000) Clinical improvement as reflected in measures of function and health-related quality of life following treatment with leflunomide compared with methotrexate in patients with rheumatoid arthritis: sensitivity and relative efficiency to detect a treatment effect in a twelve-month, placebo-controlled trial. Leflunomide Rheumatoid Arthritis Investigators Group. Arthritis Rheum 43: 506–514

    Article  PubMed  CAS  Google Scholar 

  113. Sharp JT, Strand V, Leung H, Hurley F, Loew-Friedrich I (2000) Treatment with leflunomide slows radiographic progression of rheumatoid arthritis: results from three randomized controlled trials of leflunomide in patients with active rheumatoid arthritis. Leflunomide Rheumatoid Arthritis Investigators Group. Arthritis Rheum 43: 495–505

    Article  PubMed  CAS  Google Scholar 

  114. Smeets TJ, Dayer JM, Kraan MC, Versendaal J, Chicheportiche R, Breedveld FC, Tak PP (2000) The effects of interferon-beta treatment of synovial inflammation and expression of metalloproteinases in patients with rheumatoid arthritis. Arthritis Rheum 43: 270–274

    Article  PubMed  CAS  Google Scholar 

  115. Chofflon M (2000) Recombinant human interferon beta in relapsing-remitting multiple sclerosis: a review of the major clinical trials. Eur J Neurol 7: 369–380

    Article  PubMed  CAS  Google Scholar 

  116. Arnason BG (1999) Treatment of multiple sclerosis with interferon beta. Biomed Pharmacother 53: 344–350

    Article  PubMed  CAS  Google Scholar 

  117. Déage V, Burger D, Dayer JM (1998) Exposure of T lymphocytes to leflunomide but not to dexamethasone favors the production by monocytic cells of interleukin-1 receptor antagonist and the tissue-inhibitor of metalloproteinases-1 over that of interleukin-43 and metalloproteinases. Eur Cytokine Netw 9: 663–668

    PubMed  Google Scholar 

  118. Coclet-Ninin J, Dayer JM, Burger D (1997) Interferon-beta not only inhibits interleukin113 and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw 8: 345–349

    PubMed  CAS  Google Scholar 

  119. Franceschini G (1996) Apolipoprotein function in health and disease: insights from natural mutations. Eur J Clin Invest 26: 733–746

    Article  PubMed  CAS  Google Scholar 

  120. Burger D, Dayer JM (2002) The role of human T lymphocyte-monocyte contact in inflammation and tissue destruction. Arthritis Res 4 (Suppl 3): S169–S176

    Article  PubMed  Google Scholar 

  121. Jungo F, Dayer JM, Modoux C, Hyka N, Burger D (2001) IFNβ inhibits the ability of T lymphocytes to induce TNFα and IL-1β production in monocytes upon direct cell-cell contact. Cytokine 14: 272–282

    Article  PubMed  CAS  Google Scholar 

  122. Burger D, Molnarfi N, Gruaz L, Dayer JM (2002) PI3-K is a checkpoint in the production of interleukin-1β (IL-1β) and IL-1 receptor antagonist. Eur J Biochem 269 (Suppl 1): 106 (abstract)

    Google Scholar 

  123. Dinther-Janssen AC, Pals ST, Scheper R, Breedveld F, Meijer CJ (1990) Dendritic cells and high endothelial venules in the rheumatoid synovial membrane. J Rheumatol 17: 11–17

    PubMed  Google Scholar 

  124. Kang YM, Zhang X, Wagner UG, Yang H, Beckenbaugh RD, Kurtin PJ, Goronzy JJ, Weyand CM (2002) CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J Exp Med 195: 1325–1336

    Article  PubMed  CAS  Google Scholar 

  125. De Vita S, Zaja F, Sacco S, De Candia A, Fanin R, Ferraccioli G (2002) Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. Arthritis Rheum 46: 2029–2033

    Article  PubMed  CAS  Google Scholar 

  126. Kim HJ, Berek C (2000) B cells in rheumatoid arthritis. Arthritis Res 2: 126–131

    Article  PubMed  CAS  Google Scholar 

  127. Tetlow LC, Woolley DE (1995) Mast cells, cytokines, and metalloproteinases at the rheumatoid lesion: dual immunolocalisation studies. Ann Rheum Dis 54: 896–903

    Article  PubMed  CAS  Google Scholar 

  128. Tetlow LC, Woolley DE (1995) Distribution, activation and tryptase/chymase phenotype of mast cells in the rheumatoid lesion. Ann Rheum Dis 54: 549–555

    Article  PubMed  CAS  Google Scholar 

  129. Lou J, Dayer JM, Grau GE, Burger D (1996) Direct cell/cell contact with stimulated T lymphocytes induces the expression of cell adhesion molecules and cytokines by human brain microvascular endothelial cells. Eur J Immunol 26: 3107–3113

    Article  PubMed  CAS  Google Scholar 

  130. Rezzonico R, Burger D, Dayer JM (1998) Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes downregulates types I and III collagen production via cell-associated cytokines. J Biol Chem 273: 18720–18728

    Article  PubMed  CAS  Google Scholar 

  131. Burger D, Rezzonico R, Li JM, Modoux C, Pierce RA, Welgus HG, Dayer JM (1998) Imbalance between interstitial collagenase and tissue inhibitor of metalloproteinases 1 in synoviocytes and fibroblasts upon direct contact with stimulated T lymphocytes: involvement of membrane-associated cytokines. Arthritis Rheum 41: 1748–1759

    Article  PubMed  CAS  Google Scholar 

  132. Gonzalez-Amaro R, Alarcon-Segovia D, Alcocer-Varela J, Diaz de Leon L, Rosenstein Y (1988) Mononuclear cell-fibroblast interactions in scleroderma. Clin Immunol Immunopathol 46: 412–420

    Article  PubMed  CAS  Google Scholar 

  133. Hibbs MS, Postlethwaite AE, Mainardi CL, Seyer JM, Kang AH (1983) Alterations in collagen production in mixed mononuclear leukocyte-fibroblast cultures. J Exp Med 157: 47–59

    Article  PubMed  CAS  Google Scholar 

  134. Holoshitz J, Kosek J, Sibley R, Brown DA, Strober S (1991) T lymphocyte-synovial fibroblast interactions induced by mycobacterial proteins in rheumatoid arthritis. Arthritis Rheum 34: 679–686

    Article  PubMed  CAS  Google Scholar 

  135. Spözrri B, Bickel M, Limat A, Waelti ER, Hunziker T, Wiesmann UN (1996) Juxtacrine stimulation of cytokine production in co-cultures of human dermal fibroblasts and T cells. Cytokine 8: 631–635

    Article  Google Scholar 

  136. Korn JH, Halushka PV, LeRoy EC (1980) Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production. J Clin Invest 65: 543–554

    Article  PubMed  CAS  Google Scholar 

  137. Postlethwaite AE, Smith GN, Mainardi CL, Seyer JM, Kang AH (1984) Lymphocyte modulation of fibroblast function in vitro: stimulation and inhibition of collagen production by different effector molecules. J Immunol 132: 2470–2477

    PubMed  CAS  Google Scholar 

  138. Scott S, Pandolfi F, Kurnick JT (1990) Fibroblasts mediate T cell survival: a proposed mechanism for retention of primed T cells. J Exp Med 172: 1873–1876

    Article  PubMed  CAS  Google Scholar 

  139. Corrigall VM, Solau-Gervais E, Panayi GS (2000) Lack of CD80 expression by fibroblast-like synoviocytes leading to anergy in T lymphocytes. Arthritis Rheum 43: 1606–1615

    Article  PubMed  CAS  Google Scholar 

  140. Dinther-Janssen AC, Horst E, Koopman G, Newmann W, Scheper RJ, Meijer CJ, Pals ST (1991) The VLA-4/VCAM-1 pathway is involved in lymphocyte adhesion to endothelium in rheumatoid synovium. J Immunol 147: 4207–4210

    PubMed  Google Scholar 

  141. Matsuyama T, Kitani A (1996) The role of VCAM-1 molecule in the pathogenesis of rheumatoid synovitis. Hum Cell 9: 187–192

    PubMed  CAS  Google Scholar 

  142. Postigo AA, Garcia-Vicuna R, Diaz-Gonzalez F, Arroyo AG, de Landazuri MO, Chi-Rosso G, Lobb RR, Laffon A, Sanchez-Madrid F (1992) Increased binding of synovial T lymphocytes from rheumatoid arthritis to endothelial-leukocyte adhesion molecule-1 (ELAM-1) and vascular cell adhesion molecule-1 (VCAM-1). J Clin Invest 89: 1445–1452

    Article  PubMed  CAS  Google Scholar 

  143. Washington R, Burton J, Todd RF, Newman W, Dragovic L, Dore-Duffy P (1994) Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol 35: 89–97

    Article  PubMed  CAS  Google Scholar 

  144. Burger D, Lou J, Dayer JM, Grau GE (1997) Both soluble and membrane-associated TNF activate brain microvascular endothelium: relevance to multiple sclerosis. Mol Psychiatry 2: 113–116

    Article  PubMed  CAS  Google Scholar 

  145. Feldmann M, Maini RN (2001) Anti TNFn therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol 19: 163–196

    Article  PubMed  CAS  Google Scholar 

  146. Maini RN, Feldmann M (2002) How does infliximab work in rheumatoid arthritis? Arthritis Res 4 Suppl 2: S22–S28

    Google Scholar 

  147. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109: 33–44

    Article  PubMed  CAS  Google Scholar 

  148. Zhang JH, Ferrante A, Arrigo AP, Dayer JM (1992) Neutrophil stimulation and priming by direct contact with activated human T lymphocytes. J Immunol 148: 177–181

    PubMed  CAS  Google Scholar 

  149. Cettour-Rose P, Dayer JM, Burger D, Roux-Lombard P (2003) Activation of respiratory burst in polymorphonuclear leukocytes upon contact with stimulated T cells and inhibition by high-density lipoproteins (HDLs). Arthritis Res Ther 5 (Suppl 1): 97 (abstract)

    Article  Google Scholar 

  150. Blackburn WDJr, Dohlman JG, Venkatachalapathi YV, Pillion DJ, Koopman WJ, Segrest JP, Anantharamaiah GM (1991) Apolipoprotein A-I decreases neutrophil degranulation and superoxide production. J Lipid Res 32: 1911–1918

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Burger, D., Roux-Lombard, P., Chizzolini, C., Dayer, JM. (2004). Cell-cell contact in chronic inflammation: the importance to cytokine regulation in tissue destruction and repair. In: van den Berg, W.B., Miossec, P. (eds) Cytokines and Joint Injury. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7883-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7883-8_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9609-2

  • Online ISBN: 978-3-0348-7883-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics