Skip to main content

Particle Dynamics Simulations of Rate- and State-dependent Frictional Sliding of Granular Fault Gouge

  • Chapter
Computational Earthquake Science Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Recent simulations using the particle dynamics method (PDM) have successfully captured many features of natural faults zones as illuminated in laboratory studies. However, 2-D simulations conducted on idealized assemblages of particles using simple elastic-frictional contact laws, yield friction values considerably lower than natural materials, and lack time- and velocity-dependent changes in strength that influence dynamic fault slip. Here, preliminary results of new PDM simulations are described, in which particle motions are restricted as a proxy for particle interlocking and out of plane contacts, and time-dependent contact healing is introduced to capture temporal strengthening of granular assemblages. Frictional strength is increased, and in the absence of interparticle rolling, can attain values observed in the laboratory. The resulting mechanical behavior is qualitatively similar to that described by empirically-based rate-state friction laws, providing new physical insight into the discrete mechanics of natural faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe,S., Dieterich, J., Mora, P. and Place D. (2002), Simulation of the Influence of Rate-and State-Dependent Friction on the Macroscopic Behaviour of Complex Fault Zones with the Lattice Solid Model, Pure Appl. Geophys. 159, 1967–1983.

    Article  Google Scholar 

  • Aharonov, E. and Sparks,D. (1999), Rigidity Phase Transition in Granular Packings, Phys. Rev. E 60, 6890–6896.

    Google Scholar 

  • Allen,M.P. and Tildesley, D.J., Computer Simulations of Liquids (Clarendon Press, Oxford 1987).

    Google Scholar 

  • An,L-J. and Sammis, C.G. (1994), Particle Size Distribution of Cataclastic Fault Materials from Southern California: A 3-D Study, Pure Appl. Geophys. 143, 203–227.

    Article  Google Scholar 

  • Beeler,N.M., Tullis,T. E.and Weeks,J. D. (1994), The Roles of Time and Displacement in Evolution Effect in Rock Friction, Geophys. Res. Lett. 21, 1987–1990.

    Article  Google Scholar 

  • Beeler,N.M., Tullis,T.E. and Weeks, J.D. (1996), Frictional Behavior of Large Displacement Experimental Faults, J. Geophys. Res. 101, 8697–8715.

    Article  Google Scholar 

  • Biegel, R.L., Sammis, C.S.and Dieterich,J.H. (1989), The Frictional Properties of a Simulated Gouge Having a Fractal Particle Distribution, J. Struct. Geol. 11, 827–846.

    Article  Google Scholar 

  • Cundall,P.A. and Strack,O.D.L. (1979), A Discrete Numerical Model for Granular Assemblies, GĂ©otechnique29, 47–65.

    Article  Google Scholar 

  • Cundall, P.A., Distinct Element Models of Rock and Soil Structure. In Analytical and Computationl Methods in Engineering Rock Mechanics (ed. Brown, E.T.) (Allen & Unwin, London, 1987) pp. 129–163.

    Google Scholar 

  • Cundall, P.A., Computer Simulations of Dense Sphere Assemblies. In Micromechanics of Granular Materials (eds. Satake, M. and Jenkins, J.T.) (Elsevier Science Publishers, New York, 1988) pp. 343–352.

    Google Scholar 

  • Dieterich,J.H. (1972), Time-dependent Friction in Rocks, J. Geophys. Res. 77, 3690–3697.

    Article  Google Scholar 

  • Dieterich, J.H. (1979), Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations,J. Geophys. Res. 84, 2161–2168.

    Article  Google Scholar 

  • Dieterich,J.H. and Kilgor, B.D. (1994), Direct Observation of Frictional Contacts; New Insights for State-dependent Properties, Pure Appl. Geophys. 143, 283–302.

    Article  Google Scholar 

  • Frye,F.M. and Marone,C. (2002a), The Effect of Particle Dimensionality on Granular Friction in Laboratory Shear Zones, Geophys. Res. Lett. 29, doi:10.01029/2002GL015709

    Google Scholar 

  • Frye,K. M. and Marone,C. (2002b) The Effect of Humidity on Granular Friction at Room Temperature, J. Geophys. Res. 107,doi:10.1029/2001JP000654

    Google Scholar 

  • Johnsonk,L. Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  • Karners, L. and Marone,C. (1998), The Effect of Shear Load on Frictional Healing in Simulated Fault Gouge, Geophys. Res. Lett. 25, 4561–4564.

    Article  Google Scholar 

  • Lin,X. and Ng, T.-T. (1997), A Three-dimensional Discrete Element Model Using Arrays of Ellipsoids, Geotechnique 47, 319–329.

    Article  Google Scholar 

  • Logain,J.M., Dengq, C.A., Higgs, N.G. and Wang, Z.Z.Fabrics of Experimental Fault Zones: Their Development and Relationship to Mechanical Behavior. In Fault Mechanics and Transport Properties in Rocks (eds. Evans,B.and Wong, T.-F.) (Academic Press, London 1992) pp. 33–67.

    Chapter  Google Scholar 

  • Maii, K., Frye, K. M. and Marone,C. (2002), Influence of Grain Characteristics on the Friction of Granular Shear Zones, J. Geophys. Res. 107, 2219,doi:10.1029/2001JB000516.

    Article  Google Scholar 

  • Marone,C. (1998a), The Effect of Loading Rate on Static Friction and the Rate of Fault Healing during the Earthquake Cycle, Nature 391, 69–72.

    Article  Google Scholar 

  • Marone, C. (1998b), Laboratory-derived Friction Constitutive Laws and their Application to Seismic Faulting, Ann. Rev. Earth Planet. Sci. 26, 643–696.

    Article  Google Scholar 

  • Marone,C., Raleigh, C. B. and Scholzc, H.(1990),Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge, J. Geophys. Res. 95, 7007–7025.

    Article  Google Scholar 

  • Marone,C. and Scholz, C. H. (1989), Particle Size Distribution and Microstructure within Simulated Fault Gouge, J. Struct. Geol. 11, 799–814.

    Article  Google Scholar 

  • Mora,P., Place, D., Abe, S. and Jaunie, S. (2000), Lattice Solid Simulation of the Physics of Earthquakes:The Model, Results and Directions. In GeoComplexity and the Physics of Earthquakes (Geophysical Monograph series; no. 120), (eds. Rundle, J.B., Turcotte, D.L. and Klein, W.) (Am. Geophys. Union, Washington, DC), pp. 105–125.

    Chapter  Google Scholar 

  • Mora,P. and Place, D. (1993), A Lattice Solid Model for the Nonlinear Dynamics of Earthquakes, Intl. J. of Modern Physics C 4, 1059–1074.

    Google Scholar 

  • Mora, P. and Place,D. (1994), Simulation of the Frictional Stick-slip InstabilityJ. Pure Appl. Geophys. 143, 61–87.

    Article  Google Scholar 

  • Mora,P. and Place, D. (1998), Numerical Simulation of Earthquake Faults with Gouge: Toward a Comprehensive Explanation for the Heat Flow Paradox J. Geophys. Res. 103, 21067–21089.

    Article  Google Scholar 

  • Morgan, J.K. (1998), The Micromechanics of Localization and Dilation in Granular Shear Zones Revealed by Distinct Element Simulations, EOS Trans. AGU, Spring Meeting Suppl. 79, 222.

    Google Scholar 

  • Morgan,J.K. (1999), Numerical Simulations of Granular Shear Zones Using the Distinct Element Method: I Shear Zone Kinematics and the Micromechanics of Localization, J. Geophys. Res. 104, 2703–2719.

    Article  Google Scholar 

  • Morgan, J.K. and Boettcher, M.S. (1999), Numerical Simulations of Granular Shear Zones Using the Distinct Element Method: II Effects of Particle Size Distribution and Interparticle Friction on Mechanical Behavior, J. Geophys. Res. 104, 2721–2732.

    Article  Google Scholar 

  • Nasuno,S., Kudroli,I.A.and Gollub,J.P. (1997), Time-resolved Studies of Stick-slip Friction in Sheared Granular Layers, Phys. Rev. Lett. 85, 1428–1431.

    Google Scholar 

  • Place, D., Lombar,DF., Mom, P. and Abe, S. (2002), Simulation of the Microphysics of Rocks Using LSMearth, Pure Appl. Geophys. 159, 1911–1932.

    Article  Google Scholar 

  • Place, D. and Mora, P. (2000), Numerical Simulation of Localisation Phenomena in a Fault Zone, Pure Appl. Geophys. 157, 1821–1845.

    Article  Google Scholar 

  • Rothenbur,GL. and Bathurstr, J. (1992), Micromechanical Features of Granular Assemblies with Planar Elliptical Particles, Geotechnique 39, 601–614.

    Google Scholar 

  • Sammis, C.G., King, G., and Biege, R. (1987), The Kinematics of Gouge Deformation, Pure Appl. Geophys. 125, 777–812.

    Article  Google Scholar 

  • Sammis,C.G. and Steacys,J. (1994), The Micromechanics of Friction in a Granular Layer, Pure Appl. Geophys. 142, 777–794.

    Article  Google Scholar 

  • Scholzc,H., The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, New York, 1990).

    Article  Google Scholar 

  • ScottD. R. 1996 Seismicity and Stress Rotation in a Granular Model of the Brittle Crust Nature 381, 592–595.

    Article  Google Scholar 

  • Sparks,D. and Aharono,VE., Anatomy of a Slip event in an Idealized Fault Gouge. In 2nd ACES Workshop Proc. (eds. Matsu’ura, M., Nakajima, K.and Mora, P.) (APEC Cooperation for Earthquake Simulation, Brisbane, Australia, 2001) pp. 77–82.

    Google Scholar 

  • Tinq,J.M., Khwaja, M., Meachum,L. and Rowel,J. (1993), An Ellipse-based Discrete Element Model for Granular Materials, Int. J. Numer and Anal. Meth. in Geomech. 17, 603–623.

    Article  Google Scholar 

  • Waltono,R. Force Models for Particle-dynamics Simulations of Granular Materials. In Mobil Particulate System (eds. Guazzelli, E and Oger, L.) (Kluwer Academic Publishers, Dordrecht, 1995) pp. 366–378.

    Google Scholar 

  • Walton,O.R. and Brauft,R.L. (1986), Viscosity, Granular-temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks J. Rheol. 30, 949–980.

    Article  Google Scholar 

  • Williams,J.R. and Pentlanp, A.P. (1991), Superquadrics and Model Dynamics for Discrete Elements in Concurrent Design, Technical Report Order No. IESL91–12, Intelligent Engineering Systems Laboratory, Massachusetts Institute of Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Morgan, J.K. (2004). Particle Dynamics Simulations of Rate- and State-dependent Frictional Sliding of Granular Fault Gouge. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part I. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7873-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7873-9_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7142-5

  • Online ISBN: 978-3-0348-7873-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics