Skip to main content

Calcium channels and regulation of vascular tone in hypertension

  • Chapter
Calcium Channel Blockers

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 280 Accesses

Abstract

The intravenous injection of calcium antagonists produces a hypotensive effect more pronounced in hypertensive than in normotensive animals. In conscious rats, Ishii et al. [17] have observed that a similar decrease of blood pressure was evoked by nifedipine at doses much lower in SHR than in WKY. Knorr and Garthoff [22] have compared the activity of nitrendipine and hydralazine on the blood pressure of SHR and WKY. They have reported that the vasodilator hydralazine was equipotent in both strains, but that nitrendipine evoked a much lesser reduction of blood pressure in WKY than in SHR, an observation consistent with clinical studies in humans [21, 25] and confirmed with lacidipine and amlodipine [11]. Godfraind and colleagues [12, 26] have measured the tissular concentration of amlodipine and nisoldipine at dosages which significantly reduced blood pressure in hypertensive (SHR) rats, but did not change the blood pressure of normotensive (WKY) rats. As shown on Table 1, the tissular concentration of the drugs was similar in both strains. Together with other haemodynamic observations [14], these studies indicate that calcium antagonists have an activity profile different from classical arteriolar vasodilators. Indeed, it has been reported that during chronic administration of a calcium antagonist, the decrease of blood pressure is observed without modification of the cardiac frequency [31]. It has been shown that vascular smooth muscle from hypertensive animals are hypersensitive to vasoconstrictors [5, 6, 10, 14, 20, 27, 31].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki K and Asano M. Effects of Bay K 8644 and nifedipine on femoral arteries of spontaneously hypertensive rats. Br J Pharmacol 88: 221–230, 1986

    Article  PubMed  CAS  Google Scholar 

  2. Arribas SM, Costa R, Salomone S, Morel N, Godfraind T and McGrath JC. Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment. J Cereb Blood Flow MeTab. 19: 517–527, 1999

    Article  PubMed  CAS  Google Scholar 

  3. Asano M, Matsuda T, Hayakawa M, Ito KM and Ito K. Increased resting Ca2+ maintains the myogenic tone and activates K+ channels in arteries from young spontaneously hypertensive rats. Eur J Pharmacol 247: 295–304, 1993

    Article  PubMed  CAS  Google Scholar 

  4. Asano M, Nomura Y, Ito K, Uyama Y, Imaizumi Y and Watanabe M. Increased function of voltage-dependent Ca2+ channels and Ca2+-activated K+ channels in resting state of femoral arteries from spontaneously hypertensive rats at prehypertensive stage. J Pharmacol Exp Ther 275: 775–783, 1995

    PubMed  CAS  Google Scholar 

  5. Bodin P, Travo C, Stoclet JC and Travo P. High sensitivity of hypertensive aortic myocytes to nor-epinephrine and angiotensin. Am J Physiol 264: C441–445, 1993

    PubMed  CAS  Google Scholar 

  6. Boonen HC and De Mey JG. Increased calcium sensitivity in isolated resistance arteries from spontaneously hypertensive rats: effects of dihydropyridines. Eur J Pharmacol 179: 403–412, 1990

    Article  PubMed  CAS  Google Scholar 

  7. Cox RH and Rusch NJ. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure. Microcirculation 9: 243–257, 2002

    PubMed  CAS  Google Scholar 

  8. Esler M. The sympathetic system and hypertension. Am J Hypertens 13: 99S - 1055, 2000

    Article  PubMed  CAS  Google Scholar 

  9. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 62: 347–504, 1982

    PubMed  CAS  Google Scholar 

  10. Fouda AK, Capdeville C, Henrion D, Thorin-Trescases N, Thorin E and Atkinson J. Differences between the in vitro vasoconstrictor responses of the tail artery to potassium and norepinephrine between spontaneously hypertensive, renovascular hypertensive, and various strains of normotensive rats. J Pharmacol Methods 25: 61–68, 1991

    Article  PubMed  CAS  Google Scholar 

  11. Frohlich ED. Hemodynamic effects of diltiazem in the spontaneously hypertensive rat and in human hypertension. In: Essential Hypertension; Calcium Mechanisms and Treatment. Aoki, K (Ed), p 191–218. Springer, Berlin, Heidelberg, New York, 1986

    Google Scholar 

  12. Godfraind T, Kazda S and Wibo M. Effects of a chronic treatment by nisoldipinc, a calcium antagonistic dihydropyridine, on arteries of spontaneously hypertensive rats. Circ Res 68: 674–682, 1991

    Article  PubMed  CAS  Google Scholar 

  13. Hess P, Lansman JB and Tsien RW. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544, 1984

    Article  PubMed  CAS  Google Scholar 

  14. Holloway ET and Bohr DF. Reactivity of vascular smooth muscle in hypertensive rats. Circ Res 33: 678–685, 1973

    Article  PubMed  CAS  Google Scholar 

  15. Intengan HD and Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36: 312–318, 2000

    Article  PubMed  CAS  Google Scholar 

  16. Intengan HD and Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38: 581–587, 2001

    Article  PubMed  CAS  Google Scholar 

  17. Ishii H, Itoh K and Nose T. Different antihypertensive effects of nifedipine in conscious experimental hypertensive and normotensive rats. Eur J Pharmacol 64: 21–29, 1980

    Article  PubMed  CAS  Google Scholar 

  18. Jackson WF. Ion channels and vascular tone. Hypertension 35: 173–178, 2000

    Article  PubMed  CAS  Google Scholar 

  19. Janssen BJ, van Essen H, Vervoort-Peters LH, Struyker-Boudier HA and Smits JF. Role of afferent renal nerves in spontaneous hypertension in rats. Hypertension 13: 327–333, 1989

    Article  PubMed  CAS  Google Scholar 

  20. Kam KL, Hendriks MG, Pijl AJ, van Marie J, van Veen HA, Pfaffendorf M and van Zwieten PA. Contractile responses to various stimuli in isolated resistance vessels from simultaneously hypertensive and streptozotocin-diabetic rats. J Cardiovasc Pharmacol 27: 167–175, 1996

    Article  PubMed  CAS  Google Scholar 

  21. Kazda S and Knorr A. Calcium antagonists. In: Pharmacology of Antihypertensive Therapeutics. Ganten, D. and Mulrow, P.J. (Ed), p 301–375. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer Verlag, 1990

    Chapter  Google Scholar 

  22. Knorr A and Garthoff B. Differential influence of the calcium antagonist nitrendipine and the vasodilator hydralazine on normal and elevated blood pressure. Arch Int Pharmacodyn Ther 269: 316–322, 1984

    PubMed  CAS  Google Scholar 

  23. Kwan CY. Dysfunction of calcium handling by smooth muscle in hypertension. Can J Physiol Pharmacol 63: 366–374, 1985

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Pleyte K, Knaus HG and Rusch NJ. Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats. Hypertension 30: 1403–1409, 1997

    Article  PubMed  CAS  Google Scholar 

  25. MacGregor GA, Rotellar C, Markandu ND, Smith SJ and Saguella GA. Contrasting effects of nifedipine, captopril and propranolol in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 4: S358 — S362, 1982

    Article  PubMed  Google Scholar 

  26. Morel N and Godfraind T. Selective interaction of the calcium antagonist amlodipine with calcium channels in arteries of spontaneously hypertensive rats. J Cardiovasc Pharmacol 24: 524–533, 1994

    Article  PubMed  CAS  Google Scholar 

  27. Oster L, Chillon JM, Henrion D, Capdeville C, Burlet C and Atkinson J. In vitro vasoconstriction induced by calcium in renovascular hypertensive or old rats. Life Sci 47: 1227–1234, 1990

    Article  PubMed  CAS  Google Scholar 

  28. Pratt PF, Bonnet S, Ludwig LM, Bonnet P and Rusch NJ. Up-regulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR. Hypertension 40: 214–219, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Sada T, Koike H, Ikeda M, Sato K, Ozaki H and Karaki H. Cytosolic free calcium of aorta in hypertensive rats. Chronic inhibition of angiotensin converting enzyme. Hypertension 16: 245–251, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Salomone S, Morel N and Godfraind T. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats. Br J Pharmacol 121: 1051–1058, 1997

    Article  PubMed  CAS  Google Scholar 

  31. Thompson LP, Bruner CA, Lamb FS, King CM and Webb RC. Calcium influx and vascular reactivity in systemic hypertension. Am J Cardiol 59: 29A - 34A, 1987

    Article  PubMed  CAS  Google Scholar 

  32. Vanhoutte PM. Endothelial dysfunction in hypertension. J Hypertens Suppl 14: S83–93, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Godfraind, T. (2004). Calcium channels and regulation of vascular tone in hypertension. In: Calcium Channel Blockers. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7859-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7859-3_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9599-6

  • Online ISBN: 978-3-0348-7859-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics