Skip to main content

Control of arachidonic acid levels in resting and activated U937 phagocytic cells by Ca2+-independent phospholipase A2

  • Chapter

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Availability of free arachidonic acid (AA) is widely recognized as a rate-limiting step in the formation of prostaglandins. This fatty acid is an intermediate of a reacylation/deacylation cycle of membrane phospholipids, the so-called Lands pathway, in which the fatty acid is cleaved from phospholipid by phospholipase A2s (PLA2 ) and reincorporated by acyltransferases. Whereas in resting cells reacylation dominates, in stimulated cells the dominant reaction is the PLA2-mediated deacylation. Nevertheless, increased AA reacylation during cellular activation is still very significant, as manifested by the fact that only a minor portion of the free AA released by PLA2 is converted into eicosanoids, the remainder being effectively incorporated back into phospholipids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim Biophys Acta 31: 1–19

    Google Scholar 

  2. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins 68–69,3–58

    Google Scholar 

  3. Balsinde J, Balboa MA, Insel PA, Dennis EA (1999) Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol 39: 175–189

    Article  PubMed  CAS  Google Scholar 

  4. Balsinde J, Winstead MV, Dennis EA (2002) Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett 531: 2–6

    Article  PubMed  CAS  Google Scholar 

  5. Chilton FH, Fonteh AN, Surette ME, Triggiani M, Winkler JD (1996) Control of arachidonate levels within inflammatory cells. Biochim Biophys Acta 1299: 1–15

    Article  PubMed  Google Scholar 

  6. Winstead MV, Balsinde J, Dennis EA (2000) Calcium-independent phospholipase A2: Structure and function. Biochim Biophys Acta 1488: 28–39

    Article  PubMed  CAS  Google Scholar 

  7. Balsinde J, Fernández B, Solís-Herruzo JA (1994) Increased incorporation of arachidonic acid into phospholipids in zymosan-stimulated mouse peritoneal macrophages. Eur J Biochem 221: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  8. Balsinde J, Bianco ID, Ackermann EJ, Conde-Frieboes K, Dennis EA (1995) Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci USA 92: 8527–8531

    Article  PubMed  CAS  Google Scholar 

  9. Balsinde J, Balboa MA, Dennis EA (1997) Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. J Biol Chem 272: 29317–29321

    Article  PubMed  CAS  Google Scholar 

  10. Daniele JJ, Fidelio GD, Bianco ID (1999) Calcium dependency of arachidonic acid incorporation into cellular phospholipids of different cell types. Prostaglandins 57: 341–350

    Article  CAS  Google Scholar 

  11. Alzola E, Perez-Etxebarria A, Kabre E, Fogarty DJ, Metioui M, Chaib N, Macarulla JM, Matute C, Dehaye JP, Marino A (1998) Activation by P2X7 agonists of two phospholipases A2 (PLA2 ) in ductal cells of rat submandibular gland. Coupling of the calcium-independent PLA2 with kallikrein secretion. J Biol Chem 273: 30208–30217

    Article  PubMed  CAS  Google Scholar 

  12. Birbes H, Drevet S, Pageaux JF, Lagarde M, Laugier C (2000) Involvement of calcium-independent phospholipase A2 in uterine stromal cell phospholipid remodeling. Eur J Biochem 267: 7118–7127

    Article  PubMed  CAS  Google Scholar 

  13. Ramanadham S, Hsu FF, Bohrer A, Ma Z, Turk J (1999) Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachidonic acid release in pancreatic islets and insulinoma cells. J Biol Chem 274: 13915–13927

    Article  PubMed  CAS  Google Scholar 

  14. Chiu CH, Jackowski S (2001) Role of calcium-independent phospholipases (iPLA2) in phosphatidylcholine metabolism. Biochem Biophys Res Commun 287: 600–606

    Article  PubMed  CAS  Google Scholar 

  15. Balsinde J (2002) Roles of various phospholipases A2 in providing lysophospholipid acceptors for fatty acid phospholipid incorporation and remodelling. Biochem J 364: 695–702

    Article  PubMed  CAS  Google Scholar 

  16. Balsinde J, Dennis EA (1996) Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J Biol Chem 271: 6758–6765

    Article  PubMed  CAS  Google Scholar 

  17. Chilton FH, Connell TR (1988) 1-Ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem 263: 5260–5265

    PubMed  CAS  Google Scholar 

  18. Boilard E, Surette ME (2001) Anti-CD3 and concanavalin A-induced human T cell proliferation is associated with an increased rate of arachidonate-phospholipid remodeling. Lack of involvement of group IV and group VI phospholipase A2 in remodeling and increased susceptibility of proliferating T cells to CoA-independent transacyclase inhibitor-induced apoptosis. J Biol Chem 276: 17568–17575

    Article  PubMed  CAS  Google Scholar 

  19. Hsu FF, Ma Z, Wohltmann M, Bohrer A, Nowatzke W, Ramanadham S, Turk J (2000) Electrospray ionization/mass spectrometric analyses of human pro-monocytic U937 cell glycerolipids and evidence that differentiation is associated with membrane lipid composition changes that facilitate phospholipase A2 activation. J Biol Chem 275: 16579–16589

    Article  PubMed  CAS  Google Scholar 

  20. Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA, Sapirstein, A (1997) Reduced fertility and post-ischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390: 622–625

    Article  PubMed  CAS  Google Scholar 

  21. Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F, Komagata Y, Maki K, Ikuta K, Ouchi Y, Miyazaki J, Shimizu T (1997) Role of cytosolic phospholipase A2 in allergic response and parturition. Nature 390: 618–622

    Article  PubMed  CAS  Google Scholar 

  22. Fonteh AN (2002) Differential effects of arachidonoyl trifluoromethyl ketone on arachidonic acid release and lipid mediator biosynthesis by human neutrophils. Evidence for different arachidonate pools. Eur J Biochem 269: 3760–3770

    Article  PubMed  CAS  Google Scholar 

  23. Ono T, Yamada K, Chikazawa Y, Ueno M, Nakamoto S, Okuno T, Seno K (2002) Characterization of a novel inhibitor of cytosolic phospholipase A2α. Biochem J 363: 727–735

    Article  PubMed  CAS  Google Scholar 

  24. Ghomashchi F, Stewart A, Hefner Y, Ramanadham S, Turk J, Leslie CC, Gelb MH (2001) Pyrrolidine-based specific inhibitor of cytosolic phospholipase A2α blocks arachidonic acid release in a variety of mammalian cells. Biochim Biophys Acta 1513: 160–166

    Article  PubMed  CAS  Google Scholar 

  25. Balboa MA, Balsinde J (2002) Involvement of calcium-dependent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J Biol Chem 277: 40384–40389

    Article  PubMed  CAS  Google Scholar 

  26. Balboa MA, Pérez R, Balsinde J (2003) Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosateatraenoic acid. J Immunol 171: 989–994

    PubMed  CAS  Google Scholar 

  27. Balboa MA, Sáez Y, Balsinde J (2003) Calcium-independent phospholipase A2 is required for lysozyme secretion in U937 promonocytes. J Immunol 170: 5276–5280

    PubMed  CAS  Google Scholar 

  28. Balsinde J, Dennis EA (1996) Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J Biol Chem 271: 6758–6765

    Article  PubMed  CAS  Google Scholar 

  29. Carnevale KA, Cathcart MK (2001) Calcium-independent phospholipase A2 is required for human monocyte chemotaxis to monocyte chemo-attractant protein 1. J Immunol 167: 3414–3421

    PubMed  CAS  Google Scholar 

  30. Teslenko V, Rogers M, Lefkowith JB (1997) Macrophage arachidonate release via both the cytosolic Ca2+-dependent and -independent phospholipases is necessary for cell spreading. Biochim Biophys Acta 1344,189–199

    Article  PubMed  CAS  Google Scholar 

  31. Birbes H, Gothié E, Pageaux JF, Lagarde M, Laugier C (2000) Hydrogen peroxide activation of Ca2+-independent phospholipase A2 in uterine stromal cells. Biochem Biophys Res Commun 276: 613–618

    Article  PubMed  CAS  Google Scholar 

  32. Rao GN, Runge MS, Alexander RW (1995) Hydrogen peroxide activation of cytosolic phospholipase A2 in vascular smooth muscle cells. Biochim Biophys Acta 1265: 67–72

    Article  PubMed  Google Scholar 

  33. Boyer CS, Bannenberg GL, Neve EP, Ryrfeldt A, Moldeus P (1995) Evidence for the activation of the signal-responsive phospholipase A2 by exogenous hydrogen peroxide. Biochem Pharmacol 50: 753–761

    Article  PubMed  CAS  Google Scholar 

  34. Samanta S, Perkington MS, Morgan M, Williams RJ (1998) Hydrogen peroxide enhances signal-responsive arachidonic acid release from neurons: role of mitogen-activated protein kinase. J Neurochem 70: 2082–2090

    Article  PubMed  CAS  Google Scholar 

  35. Sporn PH, Marshall TM, Peters-Golden M (1992) Hydrogen peroxide increases the availability of arachidonic acid for oxidative metabolism by inhibiting acylation into phospholipids in the alveolar macrophage. Am J Resp Cell Mol Biol 7: 307–316

    CAS  Google Scholar 

  36. Cane A, Breton M, Koumanov K, Bereziat G, Colard O (1998) Oxidant-induced arachidonic acid release and impairment of fatty acid acylation in vascular smooth muscle cells. Am J Physiol 274: C1040–C1046

    PubMed  CAS  Google Scholar 

  37. Murakami M, Kambe T, Shimbara S, Kudo I (1999) Functional coupling between various phospholipase A2s and cyclo-oxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 274: 3103–3115

    Article  PubMed  CAS  Google Scholar 

  38. Ma Z, Zhang S, Turk J, Ramanadham S (2002) Stimulation of insulin secretion and associated nuclear accumulation of iPLA2β in INS-1 insulinoma cells. Am J Physiol 282: E820–E833

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Balsinde, J., Pérez, R., Sáez, Y., Balboa, M.A. (2004). Control of arachidonic acid levels in resting and activated U937 phagocytic cells by Ca2+-independent phospholipase A2 . In: Fonteh, A.N., Wykle, R.L. (eds) Arachidonate Remodeling and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7848-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7848-7_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9594-1

  • Online ISBN: 978-3-0348-7848-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics