Advertisement

Applications of Wavelet Transforms to System Identification

  • Ryuichi Ashino
  • Takeshi Mandai
  • Akira Morimoto
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 155)

Abstract

A review of system identification based on distribution theory is given. By the Schwartz kernel theorem, to every continuous linear system, there corresponds a unique distribution, calledkernel distribution.

Formulae using wavelet transform to access time-frequency information of the kernel distribution are deduced. An application of the formula to system identification of a health monitoring system is given.

Keywords

System identification distribution wavelet transform stationary wavelet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ashino, T. Mandai and A. Morimoto, System identification based on distribution theory and wavelet transformApplic. Anal.to appear.Google Scholar
  2. 2.
    R. Coifman and D. Donoho, Translation invariant de-noising, inLecture Notes in Statistics103, Springer-Verlag, New York, NY, 1995, 125–150Google Scholar
  3. 3.
    I. DaubechiesTen Lectures on WaveletsSIAM, Philadelphia, PA, 1992.zbMATHCrossRefGoogle Scholar
  4. 4.
    K. GröchenigFoundations of Time-Frequency AnalysisBirkhäuser, Boston, 2001.zbMATHGoogle Scholar
  5. 5.
    L. Hörmander, Estimates for translation invariant operators in LP spacesActa Math.104 (1960), 93–140.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    L. HörmanderThe Analysis of Linear Partial Differential Operators ISecond Edition, Springer-Verlag, Berlin, 1990.zbMATHCrossRefGoogle Scholar
  7. 7.
    P.D. LaxFunctional AnalysisJohn Wiley&Sons, New York, NY, 2002.zbMATHGoogle Scholar
  8. 8.
    L. LjungSystem Identification: Theory for the UserPrentice Hall PTR, Upper Saddle River, NJ, 1987.zbMATHGoogle Scholar
  9. 9.
    S. Mallat, A theory for multiresolution signal decomposition: The wavelet representationIEEE Pattern Anal. and Machine Intell.11 (1989), 674–693.zbMATHCrossRefGoogle Scholar
  10. 10.
    S. MallatA Wavelet Tour of Signal ProcessingSecond Edition, Academic Press, San Diego, CA, 1999.zbMATHGoogle Scholar
  11. 11.
    G. Nason and B. Silverman, The stationary wavelet transform and some statistical applications, inLecture Notes in Statistics103, Springer-Verlag, New York, NY, 1995, 281–299.Google Scholar
  12. 12.
    J. Pesquet, H. Krim and H. Carfatan, Time-invariant orthonormal wavelet representationsIEEE Trans. Sign. Proc.44 (1996), 1964–1970.CrossRefGoogle Scholar
  13. 13.
    L. SchwartzThéorie des DistributionsNouvelle Édition, Hermann, Paris, 1966.zbMATHGoogle Scholar
  14. 14.
    E.M. SteinSingular Integrals and Differentiability Properties of FunctionsPrinceton University Press, Princeton, NJ, 1970.zbMATHGoogle Scholar
  15. 15.
    E.M. Stein and G. WeissIntroduction to Fourier analysis on Euclidean spacesPrinceton University Press, Princeton, NJ, 1971.zbMATHGoogle Scholar
  16. 16.
    F. TrevesTopological Vector Spaces Distributions and KernelsAcademic Press, New York, NY, 1967.zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • Ryuichi Ashino
    • 1
  • Takeshi Mandai
    • 2
  • Akira Morimoto
    • 3
  1. 1.Mathematical SciencesOsaka Kyoiku UniversityKashiwara, OsakaJapan
  2. 2.Research Center for Physics and MathematicsOsaka Electro-Communication UniversityNeyagawa, OsakaJapan
  3. 3.Information ScienceOsaka Kyoiku UniversityKashiwara, OsakaJapan

Personalised recommendations