Skip to main content

Self-Similarity, L p-Spectrum and Multifractal Formalism

  • Conference paper
Fractal Geometry and Stochastics

Part of the book series: Progress in Probability ((PRPR,volume 37))

Abstract

This is an expository survey of recent work on self-similar measures centered around the L p-spectrum and its relationship to the local dimension spectrum. The relationship is the multifractal formalism proposed by physicists. We will treat the formalism rigorously here. The open set condition and a new weaker separation condition will be discussed in detail; several techniques for calculating the L p-spectrum will be introduced; and the multifractal structure of functions satisfying the two-scale dilation equations will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Alexander and J. Yorke, Fat baker’s transformations, Ergodic Th. and Dynam. Syst. 4 (1984), 1–23.

    MathSciNet  MATH  Google Scholar 

  2. J. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121–134.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Arbeiter and N. Patzschke, Random Self-similar multifractals, preprint.

    Google Scholar 

  4. C. Bandt, Self-similar sets 3, Constructions with Sofie systems, Monatsh. Math. 108 (1989).

    Google Scholar 

  5. C. Bandt and S. Graf, Self-similar sets 7, Proc. Amer. Math. Soc. 114 (1992), 995–1001.

    MathSciNet  MATH  Google Scholar 

  6. M. Barnsley, Fractals everywhere, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  7. T. Bohr and D. Rand, The entropy function for characteristic exponents, Physica D 25 (1987), 387–398.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, no. 470, Springer Verlag, 1975.

    Google Scholar 

  9. A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme, Duke Math. J. 68 (1992), 313–335.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Colella and C. Heil, Characterizations of scaling functions: Continuous solutions, SIAM J. Math. Anal. Appl. 15 (1994), 496–518.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Collet, J. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems, J. Stat. Phys. 47 (1987), 609–644.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Cawley and R.D. Mauldin, Multifractal decompositions of Moran fractals, Ad vances in Mathematics 92 (1992), 196–236.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Series in Appl. Math. 61, SIAM, Philadephia, 1992.

    Google Scholar 

  14. D. Daubechies and J. Lagarias, Two-scale difference equation: I. Global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388–1410.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Daubechies and J. Lagarias, Two scale difference equation: II. Local regularity, infinite products and fractals, SIAM J. Math. Anal. 23 (1991), 1031–1079.

    Article  MathSciNet  Google Scholar 

  16. D. Daubechies and J. Lagarias, On the thermodynamic formalism for multifractal functions, preprint.

    Google Scholar 

  17. G.A. Edgar and R.D. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. 65 (1992), 604–628.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Erdös, On the smoothness properties of a family of symmetric Bernoulli convolutions, Amer. J. Math. 62 (1940), 180–186.

    Article  MathSciNet  Google Scholar 

  19. K. F. Falconer, Fractal geometry-Mathematical foundation and applications, John Wiley and Sons, New York, 1990.

    Google Scholar 

  20. K. F. Falconer, The multifractal spectrum of statistically self-similar measures, preprint (1993).

    Google Scholar 

  21. W. Feller, An introduction to probability theory and its applications, 2nd ed., Wiley, New York, 1971.

    MATH  Google Scholar 

  22. U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, Proc. Int. Sch. Phys., “Enrico Fermi” Course LXXXVIII, North Holland, Amsterdam, 1985, pp. 84–88.

    Google Scholar 

  23. A. Garsia, Arithmetic properties of Bernoulli’s convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.S. Geronimo and D.P. Hardin, An exact formula for the measure dimension associated with a class of piecewise linear maps, Constr. Approx. 5 (1989), 89–98.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Graf, On the tangential distribution of self-similar measures, preprint.

    Google Scholar 

  26. T.C. Halsey, M. H. Jensen, L.P. Kadanoff, I. Procaccia and B.J. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33 (1986), 1141–1151.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Heil, Method of solving dilation equations, Prob. and Stoch. Methods in Anal. with Appl. NATO ASI Series C: Math. Phys. Sci., 372 (1992), 15–45.

    MathSciNet  Google Scholar 

  28. H. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica 80 (1983), 435–444.

    MathSciNet  Google Scholar 

  29. T.Y. Hu, The local dimension of the Bernoulli convolution associated with the golden number, (preprint).

    Google Scholar 

  30. J. Hutchinson, Fractal and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Jaffard, Multifractal formalism for functions, Part I: Results valid for all functions; Part II: Self-similar functions, preprint.

    Google Scholar 

  32. P. Janardhan, D. Rosenblum and R. Strichartz, Numerical experiments in Fourier Asymptotics of Cantor measures and wavelets, Experimental Math, (to appear).

    Google Scholar 

  33. K.S. Lau, Fractal measures and mean p-variations, J. Funct. Anal. 108 (1992), 427–457.

    Article  MathSciNet  MATH  Google Scholar 

  34. K.S. Lau, Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal. 116 (1993), 335–358.

    Article  MathSciNet  MATH  Google Scholar 

  35. K.S. Lau and S.M. Ngai, Multifractal measure and a weak separation condition, preprint.

    Google Scholar 

  36. K.S. Lau and S.M. Ngai, The L q-dimension of the Bernoulli convolution associated with the golden number, (in preparation).

    Google Scholar 

  37. K.S. Lau and M.F. Ma, The L p-scaling functions: existence and regularity, preprint.

    Google Scholar 

  38. K.S. Lau, M.F.Ma and J. Wang, On some sharp regularity estimations of L 2-scaling functions, SIAM J. Math. Anal. (to appear).

    Google Scholar 

  39. K.S. Lau and J. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math 115 (1993), 99–132.

    Article  MathSciNet  MATH  Google Scholar 

  40. K.S. Lau and J. Wang, Characterization of L p-solutions for the two scale dilation equations, SIAM J. Math. Anal. ((1994)), to appear.

    Google Scholar 

  41. K.S. Lau, J. Wang and C. Chu, Vector-valued Choquet-Deny theorem, renewal equa tion and self-similar measures, Studia Math. (to appear).

    Google Scholar 

  42. S. Lalley, The packing and covering function of some self-similar fractals, Indiana Univ. Math. J. 37 (1988), 699–709.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Ledrappier and A. Porzio, A dimension formula for Bernoulli convolution, preprint.

    Google Scholar 

  44. A.O. Lopes, The dimension spectrum of the maximal measure, SIAM J. Math. Anal. 20 (1989), 1243–1254.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech. 62 (1974), 331–358.

    Article  MATH  Google Scholar 

  46. B. B. Mandelbrot, The fractal geometry of nature, Freeman, New York, 1983.

    Google Scholar 

  47. R. Mauldin and S. William, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811–829.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Mauldin and M. Urbanski, Dimension and measures in infinite iterated function systems, preprint.

    Google Scholar 

  49. C.A. Micchelli and H. Prautzsch, Uniform refinement of curves, Lin. Alg, Appl. 114/115 (1989), 841–870.

    Article  MathSciNet  Google Scholar 

  50. L. Olsen, A multifractal formalism, Advances in Math. (to appear).

    Google Scholar 

  51. L. Olsen, Random geometrically graph directed self-similar multifractals, Pitman Research Notes in Math. Series 307 (1994).

    Google Scholar 

  52. L. Olsen, Self-affine multifractal Sierpinski sponges in â„ťd, preprint.

    Google Scholar 

  53. F. Przytycki and Urbanski, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), 155–158.

    MathSciNet  MATH  Google Scholar 

  54. D. Rand, The singularity spectrum f (α) for cookie-cutters, Ergodic Th. and Dynamical Sys. 9 (1989), 527–541.

    MathSciNet  MATH  Google Scholar 

  55. A. RĂ©nyi, Dimension, entropy and information, Trans. 2nd Prague Conf. Inf. th., Stat. Decision. Funct., Random Processes (1957), 545-556.

    Google Scholar 

  56. A. RĂ©nyi, Probability Theory, North-Holland, 1970.

    Google Scholar 

  57. R. Riedi, An improved multifractal formalism and self-similar measures, J. Math. Anal. Appli. (to appear).

    Google Scholar 

  58. —, An improved multifractal formalism and self-affine measures, thesis, Swiss Federal Institute of Technology (1993).

    Google Scholar 

  59. R. Riedi and B. Mandelbrot, Multifractal formalism for infinite multinomial measures, preprint.

    Google Scholar 

  60. R.T. Rockafellar, Convex analysis, Princeton University Press, New Jersey, 1970.

    MATH  Google Scholar 

  61. R. Salem, Algebraic numbers and Fourier transformations, Heath Math. Monographs, Boston, 1962.

    Google Scholar 

  62. A. Schief, Separation properties of self-similar sets, Proc. Amer. Math. soc. 112 (1994), 111–115.

    Article  MathSciNet  Google Scholar 

  63. B. Solomyak, On the random series Σ±λn (an Erdös problem), preprint.

    Google Scholar 

  64. E. Stein, Singular integrals and differentiability properties of functions, Princeton U. Press, 1970.

    Google Scholar 

  65. R. Strichartz, Fourier asymptotics of fractal measures, J. Functional Anal. 89 (1990), 154–187.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Strichartz, Self-similar measures and their Fourier Transforms I, Indiana University Math. J. 39 (1990), 797–817.

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Strichartz, Self-similar measures and their Fourier Transform II, Trans. Amer. Math. Soc. 336 (1993), 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Strichartz, Self-similar measures and their Fourier Transforms III, Indiana U. Math. J. 42 (1993), 367–411.

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Strichartz, Self-similarity on nilpotent Lie groups, Contemp. Math. 140 (1992), 123–157.

    Article  MathSciNet  Google Scholar 

  70. R. Strichartz, Self-similarity in harmonic analysis, J. Fourier Anal. and Appli. 1 (1994).

    Google Scholar 

  71. R. Strichartz, A. Taylor and T. Zhang, Densities of self-similar measures, preprint.

    Google Scholar 

  72. L. Villemoes, Energy moments in time and frequency for two-scale difference equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), 1519–1543.

    Article  MathSciNet  MATH  Google Scholar 

  73. J.L. Wang, Topics in fractal geometry, University of North Texas, Ph.D. Thesis (1994).

    Google Scholar 

  74. N. Wiener and A. Wintner, On singular distributions, J. Math. Phys. 17 (1939), 233–346.

    Google Scholar 

  75. L.S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. and Dynam.Sys. 2 (1982), 109–124.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Basel AG

About this paper

Cite this paper

Lau, KS. (1995). Self-Similarity, L p-Spectrum and Multifractal Formalism. In: Bandt, C., Graf, S., Zähle, M. (eds) Fractal Geometry and Stochastics. Progress in Probability, vol 37. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7755-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7755-8_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7757-2

  • Online ISBN: 978-3-0348-7755-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics