Skip to main content

Part of the book series: OT 44 Operator Theory: Advances and Applications ((OT,volume 44))

  • 288 Accesses

Abstract

In this chapter we will use the commutant lifting theorem with the functional model S(m) to solve the Carathéodory, Nevanlinna-Pick, and Hermite-Fejér interpolation problems. Besides this we will present the natural connection between Hermite-Fejér interpolation theory and contractive Hankel operators with rational symbols. In particular, we will solve the Nehari H optimization problem for rational symbols by Hermite-Fejér interpolation. Also we will show how the Hankel operator in the Nehari optimization problem can be used in Hermite-Fejér interpolation. Furthermore we will present state space realization methods for solving the Nehari H optimization problem with rational symbols Finally, we present a Schur-Cohn test based on Hankel operators, and give a geometric interpretation of the norm of Hankel operators with rigid rational symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Comments

  1. Akhiezer, N.I. and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Frederick Ungar Publishing, New York, 1966.

    Google Scholar 

  2. Ball, J.A. and A.C.M. Ran, Hankel norm approximation of a rational matrix function in terms of its realization, Modeling Identification and Robust Control,Eds. E. I. Byrnes and A. Lindquist, Elsevier Science Publishers B.V. North Holland (1986) pp. 285296.

    Google Scholar 

  3. Ball, J.A. and A.C.M. Ran, Optimal Hankel norm model reductions and Wiener-Hopf Factorizations I: The canonical case, SIAM J. Contr. and Optimization, 25 (1987) pp. 362–382.

    Article  Google Scholar 

  4. Ball, J.A. and A.C.M. Ran, Optimal Hankel norm model reductions and Wiener-Hopf factorizations II: The non-canonical case, Integral Equations and Operator Theory, 10 (1987) pp. 416–436.

    Article  Google Scholar 

  5. Carathéodory, C., Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64 (1907) pp. 95–115.

    Article  Google Scholar 

  6. Carathéodory, C. and L., Fejér, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und uber den Picard-Landauschen Satz, Rend. Circ. Mat. Palermo, 32 (1911) pp. 218–239.

    Article  Google Scholar 

  7. Francis, B.A. and G. Zames, On IL-optimal sensitivity theory for SISO feedback systems, IEEE Trans. Auto. Cont., 29 (1984) pp. 9–16.

    Article  Google Scholar 

  8. Helson, H. and D. Lowdenslager, Prediction theory and Fourier series in several variables H, Acta Math., 106 (1961) pp. 175–213.

    Article  Google Scholar 

  9. Kovalishina, I.V. and V.P. Potapov, Integral Representation of Hermitian Positive Functions, Private Translation by T. Ando, Division of Applied Math., Research Institute of Applied Electricity, Hokkaido University, Sappora, Japan.

    Google Scholar 

  10. Lax, P., Translation invariant spaces, Acta Math., 101 (1959) pp. 163–178.

    Article  Google Scholar 

  11. Leech, R.B., Factorization of analytic functions and operator inequalities.

    Google Scholar 

  12. Livsic, M.S. and A.A. Yantsevich, Operator Colligations in Hilbert Space, John Wiley and Sons, New York, 1979.

    Google Scholar 

  13. Marple, S.L., Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, New Jersey 1987.

    Google Scholar 

  14. Masani, P., Shift invariant spaces and prediction theory, Acta Math., 107 (1962) pp. 275290.

    Google Scholar 

  15. Naimark, M.A., Self-adjoint extensions of the second kind of a symmetric operator, Bulletin (Szvestiya) Acad. Sci. URSS (ser. Math.) 4 (1940) pp. 53–104 (Russian, with English summary)

    Google Scholar 

  16. Naimark, M.A., Positive definite operator functions on a commutative group, Bulletin (Izvestiya) Acad. Sci. URSS (ser. math)., 7 (1943) pp. 237–244. (Russian, with English summary.)

    Google Scholar 

  17. Nevanlinna, R., Uber beschränkte Funktionen, die in gegebenen Puntken vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn, 13:1 (1919), 71 pp.

    Google Scholar 

  18. Nudelman, A.A., On a new problem of moment type, Dokl. Akad. Nauk SSSR, 233 (1977) pp. 792–795, Soviet Math. Dokl., 18 (1977) pp. 507–510.

    Google Scholar 

  19. Nudelman, A.A., “On a generalization of classical interpolation problems,” Dokl. Akad. Nauk SSR, 256 (1981) pp. 790–793, Soviet Math. Dokl., 23 (1981) pp. 125–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Foias, C., Frazho, A.E. (1990). Some Classical Interpolation Problems. In: The Commutant Lifting Approach to Interpolation Problems. OT 44 Operator Theory: Advances and Applications, vol 44. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7712-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7712-1_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7714-5

  • Online ISBN: 978-3-0348-7712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics