Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We constructed a 3-D physical model of tectonic loading at transcurrent plate boundaries by considering viscoelastic stress relaxation in the asthenosphere and spatial variation in frictional properties (peak strength and critical weakening displacement) of faults. With this model we simulated the process of stress accumulation and release at a seismogenic region with relatively high strength on the plate interface. In low strength regions surrounding the seismogenic region, quasi-static fault slip gradually proceeds with the progress of relative plate motion. The increase of slip deficits in the seismogenic region brings about stress concentration at its margin. The stress accumulation rate is roughly proportional to the inverse of the effective fault length. The accumulated stress is released by unstable dynamic rupture if the critical weakening displacement D c is small, and by stable fault slip if D c is very large. When a fault system consists of two adjacent seismogenic regions, sudden stress release in one region accelerates the stress accumulation process in another region through transient viscoelastic stress transfer as well as instantaneous elastic stress transfer. This indicates the importance of elastic and viscoelastic interaction between adjacent seismic faults even in stress accumulation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burridge, R., and Knopoff, L. (1964), Body Force Equivalents for Seismic Dislocations, Bull. Seismol. Soc. Am. 54, 1875 - 1888.

    Google Scholar 

  • Cohen, S. C. (1980), Postseismic Viscoelastic Surface Deformation and Stress,1. Theoretical ConsiderationsL,Displacement,and Strain Calculations, J. Geophys. Res. 85, 3131 - 3150.

    Article  Google Scholar 

  • Cox, M. G. (1972), The Numerical Evaluation of B-splines, J. Inst. Math. Appl. 10, 134-149.

    Article  Google Scholar 

  • De Boor, C. (1972), On Calculating with B-splines, J. Approx. Theory 6, 50 - 62.

    Article  Google Scholar 

  • Dieterich, J. H. (1979), Modeling of Rock Friction 1. Experimental Results and Constitutive Equations, J. Geophys. Res. 84, 2161 - 2168.

    Article  Google Scholar 

  • Fuan, Y., and Matsu’ura, M. (2000), Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication, Pure appl. geophys. 157, 2283 - 2301.

    Article  Google Scholar 

  • Iwasaki, T., and Matsu’ura, M. (1981), Quasi-static Strain and Tilt due to Faulting in the Layered Half-space with an Intervenient Viscoelastic Layer, J. Phys. Earth. 29, 499 - 518.

    Article  Google Scholar 

  • Kato, N., and Hirasawa, T. (1997), A Numerical Study on Seismic Coupling along Subduction Zones Using a Laboratory-derived Friction Law, Phys. Earth Planet. Inter. 29, 499 - 518.

    Google Scholar 

  • Lee, E. H. (1955), Stress Analysis in Visco-elastic Bodies, Q. Appl. Math. 13, 183 - 190.

    Google Scholar 

  • Levenberg, K. (1944), A Method for the Solution of Certain Nonlinear Problems in Least-squares, Q. Appl. Math. 2, 164 - 168.

    Google Scholar 

  • Lisowski, M., Savage, J. C., and Prescott, W. H. (1991), The Velocity Field along the San Andreas Fault in Central and Southern California, J. Geophys. Res. 96, 8369 - 8389.

    Article  Google Scholar 

  • Marone, C., and Scholz, C. H. (1988), The Depth of Seismic Faulting and the Upper Transition from Stable to Unstable Slip Regimes, Geophys. J. Lett. 15, 621 - 624.

    Article  Google Scholar 

  • Marquardt, D. W. (1963), An Algorithm for Least-squares Estimation of Nonlinear Parameters, Indust. Appl. Math. 11, 431 - 441.

    Article  Google Scholar 

  • Maruyama, T. (1963), On the Force Equivalents of Dynamical Elastic Dislocations with Reference to the Earthquake Mechanism, Bull. Earthq. Res. Inst. Tokyo Univ. 41, 467 - 486.

    Google Scholar 

  • Matsu’ura, M., Kataoka, H., and Shibazaki, B. (1992), Slip-dependent Friction Law and Nucleation Processes in Earthquake Rupture, Tectonophysics 211, 135 - 148.

    Article  Google Scholar 

  • Matsu’ura, M., and Sato, T. (1997), Loading Mechanism and Scaling Relation of Large Interplate Earthquakes, Tectonophysics 277, 189 - 198.

    Article  Google Scholar 

  • Matsu’ura, M., Tanimoto, T., and Lwasaki, T. (1981), Quasi-static Displacements due to Faulting in a Layered Half-space with an Intervenient Viscoelastic Layer, J. Phys. Earth. 29, 23 - 54.

    Article  Google Scholar 

  • Ohnaka, M. (1992), Earthquake Source Nucleation: A Physical Model for Short-term Precursors, Tectonophysics 211, 149 - 178.

    Article  Google Scholar 

  • Ohnaka, M. (1996), Nonuniformity of the Constitutive Law Parameters for Shear Fracture and Quasi-static Nucleation to Dynamic Rupture: A Physical Model of Earthquake Generation Process, Proc. Natl. Acad. Sci. USA 93, 3795 - 3802.

    Article  Google Scholar 

  • Ohnaka, M., Kuwahara, Y., and Yamamoto, K. (1987), Constitutive Relations between Dynamic Physical Parameters near a Tip of the Propagating Slip Zone during Stick-slip Shear Failure, Tectonophysics 144, 109 - 125.

    Article  Google Scholar 

  • Oxuso, P. G., and Dieterich, J. H. (1984), Effects of Physical Fault Properties on Frictional Instabilities Produced on Simulated Faults, J. Geophys. Res. 88, 5817 - 5827.

    Google Scholar 

  • Radok, J. R. M. (1957), Visco-elastic Stress Analysis, Q. Appl. Math. 15, 198 - 202.

    Google Scholar 

  • Ruina, A. (1983), Slip Instability and State Variable Friction Law, J. Geophys. Res. 88, 10,359-10,370. RUNDLE, J. B. (1978), Viscoelastic Crustal Deformation by Finite Quasi-static Sources, J. Geophys. Res. 83, 5937 - 5945.

    Google Scholar 

  • Rundle, J. B. (1982), Viscoelastic-gravitational Deformation by a Rectangular Thrust Fault in a Layered Earth, J. Geophys. Res. 87, 7787 - 7796.

    Article  Google Scholar 

  • Rundle, J. B., and Jackson, D. D. (1977), A three-dimensional Viscoelastic Model of a Strike Slip Fault, Geophys. J. R. Astron. Soc. 49, 575 - 591.

    Article  Google Scholar 

  • Shibazaki, B., and Matsu’ura, M. (1998), Transition Process Nucleation to High-speed Rupture Propagation: Scaling from Stick-slip Experiments to Natural Earthquakes, Geophys. J. Int. 132, 14 - 30.

    Article  Google Scholar 

  • Sibson, R. H. (1984), Roughness at the Base of the Seismogenic Zone: Contributing Factors, J. Geophys. Res. 89, 5791 - 5799.

    Article  Google Scholar 

  • Stuart, W. D. (1988), Forecast Model for Great Earthquakes at the Nankai Trough Subduction Zone, Pure appl. geophys. 126, 619 - 641.

    Article  Google Scholar 

  • Thatcher, W. (1983), Nonlinear Strain Buildup and Earthquake Cycle on the San Andreas Fault, J. Geophys. Res. 88, 5893 - 5902.

    Article  Google Scholar 

  • Tse, S. T., and Rice, J. R. (1986), Crustal Earthquake Instability in Relation to the Depth Variation of Frictional Slip Properties, J. Geophys. Res. 91, 9452 - 9472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Hashimoto, C., Matsu’ura, M. (2000). 3-D Physical Modelling of Stress Accumulation Processes at Transcurrent Plate Boundaries. In: Mora, P., Matsu’ura, M., Madariaga, R., Minster, JB. (eds) Microscopic and Macroscopic Simulation: Towards Predictive Modelling of the Earthquake Process. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7695-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7695-7_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6503-5

  • Online ISBN: 978-3-0348-7695-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics