Skip to main content

Sources of Activator Calcium for Force Generation and Maintenance of Airways Smooth Muscle

  • Chapter

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

In airways smooth muscle (ASM), as in skeletal, cardiac and other smooth muscles, the contraction-relaxation cycle is dependent largely upon the regulation of the cytosolic free calcium ion concentration ([Ca2+]1) [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo M. Calcium release from sarcoplasmic reticulum: current topics in membrane and transport. 1985; 25: 181–230.

    CAS  Google Scholar 

  2. Kuriyama H, Ito Y, Suzuki H, Kitamura K, Itoh T. Factors modifying contractionrelaxation cycle in vascular smooth muscles. Am J Physiol 1982; 243: H641–H662.

    Google Scholar 

  3. Ito Y, Itoh T. Effects of isoprenaline on the contraction-relaxation cycle in the cat trachea. Br J Pharmacol 1984; 83: 677–686.

    PubMed  CAS  Google Scholar 

  4. Rodger IW. Biochemistry of airway smooth muscle contraction. In: Barnes PJ, Rodger IW, Thomson N, eds. Asthma: Basic Mechanisms and Clinical Management. London: Academic Press Ltd., 1988; 57–79.

    Google Scholar 

  5. Aksoy MO, Murphy RA, Kamm KE. Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle. Am J Physiol 1982; 242: C109-C116.

    Google Scholar 

  6. Park R, Rasmussen H. Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J Biol Chem 1986; 261: 15734–15739.

    PubMed  CAS  Google Scholar 

  7. Morgan JP, Morgan KG. Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret. J Physiol 1984; 357: 327–339.

    Google Scholar 

  8. Small RC, Foster RW. Electrophysiologic behavior of normal and sensitized airway smooth muscle. Am Rev Respir Dis 1987; 136: S7–S11.

    Google Scholar 

  9. Souhrada M, Klein JJ, Berend N, Souhrada JF. Topographical differences in the physiological responses of canine airway smooth muscle. Respir Physiol 1983; 52: 245–248.

    PubMed  CAS  Google Scholar 

  10. Inoue T, Ito Y. Characteristics of neuro-effector transmission in the smooth muscle layer of dog bronchiole and modifications by autacoids. J Physiol 1986; 370: 551–565.

    PubMed  CAS  Google Scholar 

  11. Suzuki H, Morita K, Kuriyama H. Innervation and properties of the smooth muscle of the dog trachea. Jap J Physiol 1976; 26: 303–320.

    CAS  Google Scholar 

  12. Farley JM, Miles RP. Role of depolarization in acetylcholine-induced contractions of dog trachealis muscle. J Pharmacol Exp Ther 1977; 201: 199–205.

    PubMed  CAS  Google Scholar 

  13. Ito Y, Tajima K. Actions of indomethacin and prostaglandins on neuro-effector transmission in the dog trachea. J Physiol 1981; 319: 379–392.

    PubMed  CAS  Google Scholar 

  14. Ito Y, Inoue T. Contracture and change in membrane potential produced by sodium removal in the dog trachea and bronchiole. J Appl Physiol 1989; 2078–2086.

    Google Scholar 

  15. Xie Z, Hakoda H, Ito Y. Airway epithelial cells regulate membrane potential, neurotransmission and muscle tone of the dog airway smooth muscle. J Physiol 1992; 449: 619–639.

    PubMed  CAS  Google Scholar 

  16. Goldie RG, Fernandes LB, Farmer SG, Hay DWP. Airway epithelium-derived inhibitory factor. Trends Pharmacol Sci 1990; 11: 67–70.

    PubMed  CAS  Google Scholar 

  17. Chen G, Suzuki H. Calcium dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery. J Physiol 1990; 421: 521–534.

    PubMed  CAS  Google Scholar 

  18. Komori K, Lorenz RR, Vanhoutte PM. Nitric oxide, ACh and electrical and mechanical properties of canine arterial smooth muscle. Am J Physiol 1988; 255: H207–H212.

    Google Scholar 

  19. Matsumoto K, Aizawa H, Inoue R, Hamano S, Ikeda S, Xie Z, Hirata M, Hara N, Ito Y. Effects of epithelial cell supernatant on membrane and contraction of dog airway smooth muscles. Am J Respir Cell Mol Biol 1994; 10: 322–330.

    PubMed  CAS  Google Scholar 

  20. Souhrada JF, Dickey DW. Mechanical activities of trachea as measured in vitro and in vivo. Res Physiol 1976; 26: 27–40.

    CAS  Google Scholar 

  21. McCaig DJ, Souhrada JF. Alteration of electrophysiological properties of airway smooth muscle from sensitized guinea-pigs. Respir Physiol 1980; 41: 49–60.

    PubMed  CAS  Google Scholar 

  22. Kirkpatrick CT. Tracheobronchial smooth muscle. In: Smooth Muscle. edited by Bülbring E, Brading AF, Jones AW, Tomita T, editors. Edward Arnold 1981; 285–395.

    Google Scholar 

  23. Small RC. Electrical slow waves and tone of guinea-pig isolated trachealis muscle: effects of drugs and temperature changes. Br J Pharmacol 1982; 77: 45–54.

    PubMed  CAS  Google Scholar 

  24. Allen SL, Beech DJ, Foster RW, Morgan GP, Small RC. Electrophysiological and other aspects of the relaxant action of isoprenaline in guinea-pig isolated trachealis. Br J Pharmacol 1985; 86: 843–854.

    PubMed  CAS  Google Scholar 

  25. Zorychta E, Richardson JB. Control of smooth muscle in human airways. Bull Eur Physiopathol Respir 1980; 16: 581–586.

    PubMed  CAS  Google Scholar 

  26. Boyle JP, Davies JM, Foster RW, Morgan GR, Small RC. Inhibitory responses to nicotinic and transmural stimulation in hyocine-treated guinea-pig isolated trachealis, and electrical and mechanical study. Br J Pharmacol 1987; 90: 733–744.

    PubMed  CAS  Google Scholar 

  27. McCaig DJ. Electrophysiology of neuroeffector transmission in the isolated, innervated trachea of the guinea-pig. Br J Pharmacol 1986; 89: 793–801.

    PubMed  CAS  Google Scholar 

  28. McCaig DJ, Rodger IW. Electrophysiological effects of leukotriene D4 in guinea-pig trachealis airway smooth muscle. Br J Pharmacol 1981; 83: 399.

    Google Scholar 

  29. Clark LA, Small RC. Simultaneous recording of electrical and mechanical activity from smooth muscle of the guinea-pig isolated trachea. J Physiol 1979; 300: 5.

    Google Scholar 

  30. Allen SL, Cortijo J, Foster RW, Morgan G, Small RC, Weston AH. Mechanical and electrical aspects of the relaxant action of aminophylline in guinea-pig isolated trachealis. Br J Pharmacol 1986; 88: 473–483.

    PubMed  CAS  Google Scholar 

  31. Ito Y, Tajima K. Spontaneous activity in the trachea of dogs treated with indomethacin: an experimental model for aspirin-related asthma. Br J Pharmacol 1981; 73: 563–571.

    PubMed  CAS  Google Scholar 

  32. Akasaka K, Konno K, Ono Y, Mue S, Abe C, Kumagai M, et al. Electromyographic study of bronchial smooth muscle in bronchial asthma. Tohoku J Exp Med 1975; 117: 55–59.

    PubMed  CAS  Google Scholar 

  33. Kneussl MP, Richardson JB. Alpha-adrenergic receptors in human and canine tracheal and bronchial smooth muscle. J Appl Physiol 1978; 45: 307–311.

    PubMed  Google Scholar 

  34. Davis C, Kannan MS, Jones TR, Daniel EE. Control of human airway smooth muscle: in vitro studies. J Appl Physiol 1982; 53: 1080–1087.

    PubMed  CAS  Google Scholar 

  35. Chideckel EW, Frost JL, Mike P, Fedan JS. The effects of ouabain on tension in isolated respiratory tract smooth muscle of humans and other species. Br J Pharmacol 1987; 92: 609–614.

    PubMed  CAS  Google Scholar 

  36. Honda K, Tomita T. Electrical activity in isolated human tracheal muscle. Jap J Physiol 1987; 37: 333–336.

    CAS  Google Scholar 

  37. Ito Y, Suzuki H, Aizawa H, Hakoda H, Hirose T. The spontaneous electrical and mechanical activity of human bronchial smooth muscle: its modulation by drugs. Br J Pharmacol 1989; 98: 1249–1260.

    PubMed  CAS  Google Scholar 

  38. Korenaga S, Takeda K, Ito Y. Differential effects of halothane on airway nerves and muscle. Anesthesiology 1984; 60: 309–319.

    PubMed  CAS  Google Scholar 

  39. Xie Z, Hirose T, Hakoda H, Ito Y. Effects of vasoactive intestinal polypeptide antagonists on cholinergic neurotransmission in dog and cat trachea. Br J Pharmacol 1991; 104: 938–944.

    PubMed  CAS  Google Scholar 

  40. Souhrada M, Souhrada JF. Re-assessment of electrophysiological and contractile characteristics of sensitized airway smooth muscle. Respir Physiol 1981; 46: 17–27.

    PubMed  CAS  Google Scholar 

  41. Ahmed F, Foster RW, Small RC. Some effects of nifedipine in guinea-pig isolated trachealis. Br J Pharmacol 1985; 84: 861–869.

    PubMed  CAS  Google Scholar 

  42. Foster RW, Small RC, Weston AH. Evidence that the spasmogenic action of tetraethylammonium in guinea-pig trachealis is both direct and dependent on the cellular influx of calcium ion. Br J Pharmacol 1983; 79: 255–263.

    PubMed  CAS  Google Scholar 

  43. Small RC, Foster RW. Airways smooth muscle: an overview of morphology, electrophysiology and aspects of the pharmacology of contraction and relaxation. In Kay AB, ed. Asthma: clinical pharmacology and therapeutic progress. London; Blackwell Scientific, 1986; 101–113.

    Google Scholar 

  44. Allen SL, Foster RW, Small RC, Towart R. The effects of the dihydropyridine BAYK 8644 in guinea-pig isolated trachealis. Br J Pharmacol 1985; 86: 171–180.

    PubMed  CAS  Google Scholar 

  45. McCann JD, Welsh MJ. Calcium-activated potassium channels in canine airway smooth muscle. J Physiol 1986; 372: 113–127.

    PubMed  CAS  Google Scholar 

  46. Huang HM, Dwyer TM, Farley JM. Patch-clamp recording of single Ca2+-activated K+-channels in trachea smooth muscle from swine. Biophys J 1987; 51: 50a.

    Google Scholar 

  47. Murray MA, Berry JL, Cook SJ, Foster RW, Green KA, Small RC. Guinea-pig isolated trachealis: the effects of charybdotoxin on mechanical activity, membrane potential changes and the activity of plasmalemmal K+-channels. Br J Pharmacol 1991; 103: 1814–1818.

    PubMed  CAS  Google Scholar 

  48. Kume H, Takai A, Tokuno H, Tomita T. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature 1989; 341: 152–154.

    PubMed  CAS  Google Scholar 

  49. Hisada T, Kurachi Y, Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. Pflügers Arch 1990; 416: 151–161.

    PubMed  CAS  Google Scholar 

  50. Small RC, Boyle JP, Foster RW, Good DM. Airway smooth muscle: electrophysiological properties and behavior. In: Agrawal DK, Tounely RG, eds. Airway smooth muscle: Modulation of Receptors and Response. Baco Raton: CRC Press.

    Google Scholar 

  51. Muraki K, Imaizumi T, Kojima T, Kawai T, Watanabe M. Effects of tetraethylammonium and 4-aminopyridine on outward currents and excitability in canine tracheal smooth muscle cells. Br J Pharmacol 1990; 100: 507–515.

    PubMed  CAS  Google Scholar 

  52. Green KA, Foster RW, Small RC. A patch-clamp study of K+-channel activity in bovine isolated tracheal smooth muscle cells. Br J Pharmacol 1991; 102: 871–878.

    PubMed  CAS  Google Scholar 

  53. Kroeger EA, Stephens NL. Effect of tetraethylammonium on tonic airway smooth muscle: initiation of phasic electrical activity. Am J Physiol 1975; 228: 633–636.

    PubMed  CAS  Google Scholar 

  54. Imaizumi Y, Watanabe M. The effect of tetraethylammonium chloride on potassium permeability in the smooth muscle cell membrane of canine trachea.

    Google Scholar 

  55. Ito Y, Itoh T. The roles of stored calcium in contractions of cat tracheal smooth muscle produced by electrical stimulation, acetylcholine and high K+ . Br J Pharmacol 1984; 83; 667–676.

    PubMed  CAS  Google Scholar 

  56. Imaizumi Y, Watanabe M. Effects of 4-aminopyridine on potassium permeability of canine tracheal smooth muscle cell membrane. Jap J Pharmacol 1983; 33: 201–208.

    PubMed  CAS  Google Scholar 

  57. Kannan MS, Jager LP, Daniel EE, Garfield RE. Effects of 4-aminopyridine and tetraethylammonium chloride on the electrical activity and cable properties of canine tracheal smooth muscle. J Pharmacol Exp Ther 1983; 227: 706–715.

    PubMed  CAS  Google Scholar 

  58. Imaizumi Y, Watanabe M. The effect of procaine on potassium permeability of canine tracheal smooth muscle. Pflügers Arch 1982; 394: 144–149.

    PubMed  CAS  Google Scholar 

  59. Smith C, Phillips M, Miller C. Purification of charybdotoxin, a specific inhibitor of the high conductance Ca2+-activated K+-channel. J Biol Chem 1986; 261: 14607–14613.

    PubMed  CAS  Google Scholar 

  60. Okabe K, Kitamura K, Kuriyama H. Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pflügers Arch 1987; 409: 561–568.

    PubMed  CAS  Google Scholar 

  61. Toro L, Stefani E. Ca2+ and K+ current in cultured vascular smooth muscle cells from rat aorta. Pflügers Arch 1987; 408: 417–419.

    PubMed  CAS  Google Scholar 

  62. Beech DJ, Bolton TB. The effects of tetraethylammonium ions, 4-aminopyridine or guanidine on K+-currents in single smooth muscle cells of the rabbit portal vein. Biomed Biochim Acta 1987; 46: S673–5676.

    Google Scholar 

  63. Imaizumi Y, Muraki K, Takeda M, Watanabe M. Measurement and stimulation of nonactivating Ca current in smooth muscle cells. Am J Physiol 1989; 256: C880–C885.

    Google Scholar 

  64. Klöckner U, Isenberg C. Action potentials and net membrane current of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflügers Arch 1985; 405: 329–339.

    PubMed  Google Scholar 

  65. Benham CD, Hess P, Tsien R. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single channel recordings. Cir Res 1987; Suppl 1: 110–116.

    Google Scholar 

  66. Loriand G, Mirroneau C, Mirroneau J, Pacaud P. Two types of calcium currents in single smooth muscle cells from rat portal vein. J Physiol 1989; 412: 333–349.

    Google Scholar 

  67. Yatani A, Seidel CL, Allen J, Brown AM. Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Cir Res 1987; 60: 523–533.

    CAS  Google Scholar 

  68. Walsh JV, Singer J. Identification and characterization of major ionic currents in isolated smooth muscle cells using the voltage-clamp technique. Pflügers Arch 1987; 408: 83–97.

    PubMed  CAS  Google Scholar 

  69. Kotlikoff MI. Calcium currents in isolated canine airway smooth muscle cells. Am J Physiol 1988, 254: C793–C801.

    Google Scholar 

  70. Arronson PI, Bolton TB, Lang RJ, Mackenzie I. Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solution. J Physiol 1988; 405: 57–75.

    Google Scholar 

  71. Marthan R, Martin C, Amedee T, Mirroneau J. Calcium channel currents in isolated smooth muscle cells from human bronchus. J Appl Physiol 1989; 66: 1706–1714.

    PubMed  CAS  Google Scholar 

  72. Worley JF, Quayle JM, Standen NB, Nelson MT. Regulation of single calcium channels in cerebral arteries by voltage, serotonin and dihydropyridines. Am J Physiol 1991; 261: H1957–H1960.

    Google Scholar 

  73. Kamishima T, Nelson MT, Patlak JB. Carbachol modulates voltage sensitivity of calcium channels in bronchial muscle of rats. Am J Physiol 1992; 263: C69–C77.

    Google Scholar 

  74. Coburn RF. Electromechanical coupling in canine trachealis muscle: acetylcholine contractions. Am J Physiol 1979; 236: C177–C184.

    Google Scholar 

  75. Ahmed F, Foster RW, Small RC, Weston AH. Some features of the spasmogenic actions of acetylcholine and histamine in guinea-pig isolated trachea. Br J Pharmacol 1984; 83: 227–233.

    PubMed  CAS  Google Scholar 

  76. Berridge MJ. Inositol and calcium signalling. Proc R Soc Lond [Biol] 1988; 234: 359–378.

    CAS  Google Scholar 

  77. Hashimoto T, Hirata M, Ito Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol 1985; 86: 191–199.

    PubMed  CAS  Google Scholar 

  78. Baron CB, Cunningham M, Strauss JF, Coburn RF. Pharmacomechanical coupling in smooth muscle may involve phosphatidyl inositol metabolism. Proc Natl Acad Sci 1984; 81: 68900–68903.

    Google Scholar 

  79. Takuwa Y, Takuwa N, Rasmussen H. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle: measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol and phosphatidic acid. J Biol Chem 1986; 261: 14670–14675.

    PubMed  CAS  Google Scholar 

  80. Chilvers ER, Barnes PJ, Nakorski SR. Muscarinic receptor stimulated turnover of polyphosphoinositides and inositol polyphosphates in bovine trachea smooth muscle. Br J Pharmacol 1988; 95: 778.

    Google Scholar 

  81. Downes CP, Srone M. Lithium-induced reduction in intracellular inositol supply in cholinergically-stimulated parotid gland. Biochem J 1986; 234: 199–204.

    PubMed  CAS  Google Scholar 

  82. Hall IP, Hill SJ. B2-adrenoceptor stimulation inhibits histamine-stimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br J Pharmacol 1988; 95: 1204–1212.

    PubMed  CAS  Google Scholar 

  83. Chilvers ER, Barnes PJ, Nahorski SR. Characterization of agonist-stimulated incorporation of [3H] myo-inositol into inositol phospholipids and [3H]inositol phosphate formation in tracheal smooth muscle. Biochem J 1989; 262: 739–746.

    PubMed  CAS  Google Scholar 

  84. Lemoine H, Pohl V, Teng KJ. Serotonin (5-HT) stimulates phosphatidylinositol (PI) hydrolysis only through the R-state of allosterically regulated 5-HT2 receptors in calf tracheal smooth muscle. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 377 (Suppl: R103).

    Google Scholar 

  85. Grandordy BM, Frossard N, Rhoden KJ, Barnes PJ. Tachykinin-induced phosphoinositide breakdown in airway smooth muscle and epithelium: relationship to contraction. Mol Pharmacol 1988; 33: 515–519.

    PubMed  CAS  Google Scholar 

  86. Grandordy BM, Cuss FM, Meldrum L, Sturton PG, Barnes PJ. Leukotriene C4 and D4 induce contraction and formation of inositol phosphates in airways and lung parenchyma (abstract). Am Rev Resp Dis 1986; 133: A239.

    Google Scholar 

  87. Chilvers ER, Barnes PJ, Nahorski SR. Muscarinic receptor stimulated turnover of polyphosphoinositides and inositol polyphosphates in bovine tracheal smooth muscle. Br J Pharmacol 1988; 95: 778.

    Google Scholar 

  88. Chilvers ER, Nahorski SR. Phosphoinositide metabolism in airway smooth muscle. Am Rev Resp Dis 1990; 141: 5137–S140.

    Google Scholar 

  89. Best L, Bolton TB. Depolarization of guinea-pig visceral smooth muscle causes hydrolysis of inositol phospholipids. Arch Pharmacol 1986; 333: 78–82.

    CAS  Google Scholar 

  90. Sasaguri T, Watson SP. Lowering of the extracellular Na concentration enhances high K+-induced formation of inositol phosphates in the guinea-pig ileum. Biochem J 1988; 252: 883–888.

    PubMed  CAS  Google Scholar 

  91. Miller-Hance WC, Miller JR, Wells JN, Stull JT, Kamm KE. Biochemical events associated with activation of smooth muscle contraction. J Biol Chem 1988; 263: 13979 – 13982.

    PubMed  CAS  Google Scholar 

  92. Duncan RA, Krzanowski JJ, Davis JS, Polson JB, Coffey RG, Shinoda T, Szentivanyi A. Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus. Biochem Pharmacol 1987; 36: 307–310.

    PubMed  CAS  Google Scholar 

  93. Kennedy ED, Batty IH, Chilvers ER, Nahorski SR. A simple enzymatic method to separate [3H] inositol (1,4,5) and (1,3,4)-trisphosphate isomers in tissue extracts. Biochem J 1989; 260: 283–286.

    PubMed  CAS  Google Scholar 

  94. Balla T, Guillemette GG, Baukai AJ, Catt KT. Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem 1987; 262: 9952–9955.

    PubMed  CAS  Google Scholar 

  95. Chilvers ER, Batty IH, Barnes PJ, Nahorski SR. Formation of inositol polyphosphates in airway smooth muscle following muscarinic receptor stimulation. J Pharmacol Exp Ther 1990; 252: 786–791.

    PubMed  CAS  Google Scholar 

  96. Palmer S, Hughes KT, Lee DY, Wakelam MJP. Development of a novel Ins(1,4,5)P3specific binding assay. Its use to determine the intracellular concentration of Ins(1,4,5)P3 in unstimulated and vasopressin-stimulated rat hepatocytes. Cell signalling 1989; 1: 147–153.

    PubMed  CAS  Google Scholar 

  97. Challiss RAJ, Batty IH, Nahorski SR. Mass measurements of inositol (1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: Effect of neurotransmitters and depolarization. Biochem Biophys Res Commun 1988; 157: 684–691.

    PubMed  CAS  Google Scholar 

  98. Chilvers ER, Challiss RAJ, Barnes PJ, Nahorski SR. Mass changes in inositol 1,4,5trisphosphate in trachealis muscle following agonist stimulation. Eur J Pharmacol 1989; 164: 587–590.

    PubMed  CAS  Google Scholar 

  99. Danoff SK, Supattapone S, Snyder SH. Characterization of membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem J 1988; 254: 701–705.

    PubMed  CAS  Google Scholar 

  100. Fay FS, Shlevin HH, Granger Jr WC, Taylor SR. Aequorin luminescence during activation of single isolated smooth muscle cells. Nature 1979; 280: 506–508.

    PubMed  CAS  Google Scholar 

  101. Takuwa Y, Takuwa N, Rasmussen H. Measurement of cytoplasmic free Ca2+ concentration in bovine tracheal smooth muscle using aequorin. Am J Physiol 1987; 22: C817–C827.

    Google Scholar 

  102. Williams DA, Fogarty KE, Tsien RY, Fay FS. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 1985; 318: 558–561.

    PubMed  CAS  Google Scholar 

  103. Williams DA, Bechker PL, Fay FS. Regional changes in calcium underlying contraction of single smooth muscle cells. Science 1987; 235: 1644–1648.

    PubMed  CAS  Google Scholar 

  104. Roe MW, Lemasters JJ, Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 1990; 11: 63–73.

    PubMed  CAS  Google Scholar 

  105. Yagi S, Becker PL, Fay FS. Relationship between force and [Ca2+] in smooth muscle as revealed by measurements on single cells. Proc Natl Acad Sci 1988; 85: 4109–4113.

    PubMed  CAS  Google Scholar 

  106. Shieh C, Petrini MF, Dwyer M, Farley JM. Cromakalim effects on acetylcholine-induced changes in cytosolic calcium and tension in swine trachealis. J Pharmacol Exp Ther 1991; 260: 261–268.

    Google Scholar 

  107. Gunst SJ, Bandyopathyay S. Contractile force and intracellular Ca2+ during relaxation of canine tracheal smooth muscle. Am J Physiol 1989; 257: C355–C364.

    Google Scholar 

  108. Murray RK, Kotlikoff MI. Receptor-activated calcium influx in human airway smooth muscles. J Physiol 1991; 435: 123–144.

    PubMed  CAS  Google Scholar 

  109. Konishi M, Olson A, Hollingworth S, Baylor SM. Myoplasmic binding of Fura-2 investigated by steady-state fluorescence and absorbance measurements. Biophys J 1988; 54: 1089–1104.

    PubMed  CAS  Google Scholar 

  110. Nelson MT, Standen NB, Brayden JE, Worley JF. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 1988; 336: 382–285.

    PubMed  CAS  Google Scholar 

  111. Inoue R, Isenberg G. Effects of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J Physiol 1990; 424: 57–71.

    PubMed  CAS  Google Scholar 

  112. Itoh T, Kuriyama H, Suzuki H. Excitation-contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol 1981; 321: 513–535.

    PubMed  CAS  Google Scholar 

  113. Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol 1986; 370: 605–618.

    PubMed  CAS  Google Scholar 

  114. Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea-pig taenia caeci. J Gen Physio 1990; 95: 1103–1122.

    CAS  Google Scholar 

  115. Furuichi T, Shiota C, Mikoshiba K. Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissues. FEBS Lett 1990; 267: 85–88.

    PubMed  CAS  Google Scholar 

  116. Iino M, Endo M. Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release. Nature 1992; 360: 76–78.

    PubMed  CAS  Google Scholar 

  117. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989; 342: 32–38.

    PubMed  CAS  Google Scholar 

  118. Mikoshiba K. Inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 1993; 14: 86–89.

    PubMed  CAS  Google Scholar 

  119. Fleisher S, Ogunbunmi EM, Dixon MC, Fleer EAM. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci 1985; 82: 7256–7259.

    Google Scholar 

  120. Rouussean E, Smith JS, Meissner G. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 1987; 253: C364—C368.

    Google Scholar 

  121. Katsuyama H, Ito S, Itoh T, Kuiryama H. Effects of ryanodine on acetylcholine-induced Ca2+ mobilization in single smooth muscle cells of the porcine coronary artery. Pflüg Arch 1991; 419: 460–466.

    CAS  Google Scholar 

  122. Itoh T, Kajikuri J, Kuriyama H. Characteristic features of noradrenaline-induced Ca2+ mobilization and tension in arterial smooth muscle of the rabbit. J Physiol 1992; 457: 297–314.

    PubMed  CAS  Google Scholar 

  123. Galione A. Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol Sci 1992; 13: 304–306.

    PubMed  CAS  Google Scholar 

  124. Takasawa S, Nata K, Yonekura H, Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic β cells. Science 1993; 259: 370–373.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Ito, Y., Itoh, T. (1994). Sources of Activator Calcium for Force Generation and Maintenance of Airways Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7681-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7681-0_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7683-4

  • Online ISBN: 978-3-0348-7681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics