Spatial contrast sensitivity and visual accommodation studied with VEP (Visual Evoked Potential), PET (Positron Emission Tomography) and psychophysical techniques

  • Ove Franzén
  • Gunnar Lennerstrand
  • José Pardo
  • Hans Richter


Psychophysical scales of a 3,3 c/deg monochromatic checkerboard of variable contrast were compared with steady state visually evoked potentials (VEP) recorded by gross electrodes on the scalp. These estimates of neuronal population responses grew as a power function of physical contrast having an exponent of approximately the same magnitude as the corresponding psychophysical function which gives credence to the validity of the procedures employed. The functional neuroimaging technique of positron emission tomography (PET), based on radioactive decay of a labelled tracer occurring inside the brain, was applied in normal subjects to quantitatively explore the influence of voluntary positive accommodation and also to examine the effect of reduced contrast sensitivity in human strabismic amblyopia. A great asymmetry in metabolic activity was observed in the striate cortex, that is, the Brodmann area 17 (BA 17) activation was strongest contralateral to the dominant viewing eye. The PET scans revealed, however, a high correlation between blood flow increases in the right striate cortex (BA 17) and the left extrastriate cortex (BA 18) during voluntary accommodation, possibly reflecting top-down modulation and reentrant processes. The poor contrast sensitivity in strabismic amblyopia could essentially be explained by deactivation of the ipsilateral extrastriate cortical areas BA 18 and BA 19.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, M., and Franzen, O. (1994) Encoding of the subjective intensity of sharp dental pain. Endodontics and Dental Traumatology 10: 153–166.CrossRefGoogle Scholar
  2. Bando, T. and Toda, H. (1991) Cerebral cortical and brainstem areas related to the central control of lens accommodation in cat and monkey. Comparative Biochemistry and Physiology 98: 229–237.CrossRefGoogle Scholar
  3. Bodis-Wollner, I., Atkin, A., Edward, R. and Wolkstein, M. (1977) Visual association cortex and vision in man: Pattern-evoked occipital potentials in a blind boy. Science 198; 629–63.PubMedCrossRefGoogle Scholar
  4. Bolz, J. and Gilbert, C.D. (1989) The role of horizontal connections in generating long receptive fields in the cat visual cortex. European Journal of Neuroscience 1: 263–268.PubMedCrossRefGoogle Scholar
  5. Borg, G. (1994) Psychophysical Scaling: An overview. In: J. Boivie, P. Hansson and U. Lindblom. (eds): Touch, Temperature, and Pain in Health and Disease: Mechanisms and Assessments. Progress in Pain Research and Management, Vol. 3. IASP Press, pp. 27–38.Google Scholar
  6. Budd, J. (1998) Extrastriate feedback to primary visual cortex in primates: A quantitative analysis of connectivity. Proceedings of the Royal Society, London, 265: 1037–1044.CrossRefGoogle Scholar
  7. Bunge, M. and Ardila, R. (1987) Philosophy of Psychology. Springer Verlag, Berlin.CrossRefGoogle Scholar
  8. Buzsáki, G. and Chrobak, J.J. (1995) Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Current Opinion in Neurobiology 5: 504–510.PubMedCrossRefGoogle Scholar
  9. Campbell, F.W. and Maffei, L. (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology 207: 635–652.PubMedGoogle Scholar
  10. Campbell, F.W. and Robson, J.G. (1968) Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197; 551–566.PubMedGoogle Scholar
  11. Campos, E. (1995) Amblyopia. Survey of Ophthalmology 40: 23–39.PubMedCrossRefGoogle Scholar
  12. Ciuffreda, K.J. and Hokoda, S.C. (1985) Effect of instruction and higher level control on the accommodative response spatial frequency profile. Ophthalmic and Physiological Optics 5: 221–23.PubMedCrossRefGoogle Scholar
  13. Ciuffreda, K.J., Levi, D.M. and Selenow, A. (1991) Amblyopia. Basic and clinical aspects. Butterworth-Heineman, Boston.Google Scholar
  14. Corbetta, M., Miezin, F.M., Shulman, G.L. and Petersen, S.E. (1993) A PET study of visuospatial attention. Journal of Neuroscience 93: 1202–1226.Google Scholar
  15. Crawford, M.L.J., Smith III, E.L., Harwerth, R.S. and von Noorden, G.K. (1984) Stereoblind monkeys have few binocular neurons. Investigative Ophthalmology and Visual Science 25; 779–781.PubMedGoogle Scholar
  16. Daw, N.W. (1991). Mechanisms of plasticity in the visual cortex. Investigative Ophthalmology and Visual Science 25: 4168–4179.Google Scholar
  17. Demer, J.L. (1993) Positron emission tomographic studies of cortical function in human amblyopia. Neuroscience and Behavioral Reviews 17: 469–476.CrossRefGoogle Scholar
  18. Demer J.L., von Noorden, G.K., Volkow, N.D. and Gould, K.L. (1988) Imaging of cerebral blood flow and metabolism in amblyopia by positron emission tomography. American Journal of Ophthalmology 105: 337–347.PubMedCrossRefGoogle Scholar
  19. De Valois, K.K., De Valois, L. and Yund, E.W. (1979) Responses of striate cortex cells to grating and checkerboard patterns. Journal of Physiology 291; 483–505.PubMedGoogle Scholar
  20. De Valois, R.L. and De Valois, K.K. (1980) Spatial Vision. Annual Review of Psychology 31: 309–341.PubMedCrossRefGoogle Scholar
  21. Douglas, R.J. and Martin, K.A.G. (1991) A functional microcircuit for cat visual cortex. Journal of Physiology 440: 735–769.PubMedGoogle Scholar
  22. Dowling, J. E. (1992) Neurons and Networks. An Introduction to Neuroscience. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  23. Driver, J. and Mattingley, J.B. (1995) Selective attention in humans: Normality and pathology. Current Opinion in Neurobiology 5: 191–197.PubMedCrossRefGoogle Scholar
  24. Duffy, F.H., Burchfiel, J.L. and Conway, J.L. (1976) Bicuculline reversal of deprivation amblyopia in the cat. Nature 260: 256–257.PubMedCrossRefGoogle Scholar
  25. Edelman, G.M. (1993) Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron 10: 115–125.PubMedCrossRefGoogle Scholar
  26. Eggers, H.M., Grizzi, M.S. and Movshon, J.A. (1984) Spatial properties of striate cortical neurons in esotropic macaques. Investigative Ophthalmology and Visual Science 25 (suppl.), 278.Google Scholar
  27. Ekman, G. (1958) Two generalized ratio scaling methods. Journal of Psychology 45: 287–295.CrossRefGoogle Scholar
  28. Engel, A.K., König, P., Kreiter, A.K., Schillen, T.B. and Singer, W. (1992) Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends in Neurosciences 15: 218–226.PubMedCrossRefGoogle Scholar
  29. Enroth-Cugell, C and Robson, J.G. (1984) Functional characteristics and diversity of cat retinal ganglion cells. Investigative Ophthalmology and Visual Science 3:250–267.Google Scholar
  30. Ferster, D. (1991) Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex. Current Opinion in Neurobiology 4: 563–568.CrossRefGoogle Scholar
  31. Franzén, O. (1976) Somatosensory potentials from the exposed cortex in monkey and from the scalp in man related to the sensory magnitude of tactual stimulation. In. Y. Zotterman (ed.) Sensory Functions of the Skin. Pergamon Press, Oxford, pp. 119–127.Google Scholar
  32. Franzén, O. (1978) On binocular vision. Scandinavian Journal of Psychology 19: 223–229.PubMedCrossRefGoogle Scholar
  33. Franzén, O. and Ahlquist, M. (1989) The intensive aspect of information processing in the intradental A-delta system in man — A psychophysiological analysis of dental sharp pain. Behavioural Brain Research 33: 1–13.PubMedCrossRefGoogle Scholar
  34. Franzén, O. and Ahlquist, M. (1996) Central representation and coding of sharp dental pain in man. 8 th World Congress of Psychophysiology. Tampere, Finland. A 169.Google Scholar
  35. Franzén, O. and Berkley, M. (1975) Apparent contrast as a function of modulation depth and spatial frequency: A comparison between perceptual and electrophysiological measures. Vision Research 15: 655–660.PubMedCrossRefGoogle Scholar
  36. Franzén, O., Johansson, R. and Terenius, L. (1996) Somesthesis and the neurobiology of the somatosensory cortex. Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  37. Franzén, O., Kenshalo, Sr. D., Essick, G. (1991) Neural population encoding of touch intensity. In: Franzén, O. and Westman, J. (eds): Information Processing in the Somatosensory System. Macmillan Press, London, pp. 71–80.Google Scholar
  38. Franzén, O., Lennerstrand, G. and Richter, H. (1994) Brain potential correlates of supraliminal contrast functions and defocus. International Journal of Human-Computer Interaction 6: 155–176.CrossRefGoogle Scholar
  39. Franzén, O. and Offenloch, K. (1969) Evoked response correlates of psychophysical magnitude estimates for tactile stimulation in man. Experimental Brain Research 8: 1–18.CrossRefGoogle Scholar
  40. Franzén, O., Richter, H. and von Sandor, R. (1987) Vision monitoring of VDU operators and relaxation of visual stress by means of a laser speckle system. In: B. Knave and P.-G. Widebäck (eds.), Work with Display Units 86. Elsevier Science Publishers (North Holland), Amsterdam, pp. 539–551.Google Scholar
  41. Franzén, O. and Westman, J. (eds): Information Processing in the Somatosensory System. Macmillan Press, London.Google Scholar
  42. Franzén, O., Thompson, F. and Davenport, P. (1985) The role of recruitment of cutaneous mechanoreceptors in spinal and cortical intensity functions. Acta Physiologica Scandinavica 124 (suppl. 542), 431.Google Scholar
  43. Friston, K.J. (1994) Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2:56–78.CrossRefGoogle Scholar
  44. Georgopoulos, A.P. (1991) Higher order motor control. Annual Review of Neuroscience 14: 361–377.PubMedCrossRefGoogle Scholar
  45. Georgeopoulos, A.P. (1995) Current issues in directional motor control. Trends in Neurosciences 18: 506–510.CrossRefGoogle Scholar
  46. Georgopoulos, A.P., Schwartz, A.B. and Kettner, R.E. (1986) Neuronal population coding of movement direction. Science 233: 1416–1419.PubMedCrossRefGoogle Scholar
  47. Gescheider, G. (1997) Psychophysics. The Fundamentals. Lawrence Erlbaum Associates, Publishers, London.Google Scholar
  48. Geschwind, N. (1965) Disconnexion syndromes in animals and man. Brain 88: 237–294, 585–644.PubMedCrossRefGoogle Scholar
  49. Gilbert, C.D. and Wiesel, T.N. (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience 97: 2432–2442.Google Scholar
  50. Gnadt, J.W. and Mays, L.E. (1989) Posterior parietal cortex, the oculomotor near response and spatial coding in 3-D space. Neuroscience Abstracts 15: 786.Google Scholar
  51. Goodale, M.A. and Milner, A.D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15: 20–25.PubMedCrossRefGoogle Scholar
  52. Gross, C.G. (1994) How inferior temporal cortex became a visual area. Cerebral Cortex 5: 455–469.CrossRefGoogle Scholar
  53. Hata, Y. and Stryker, M.P. (1994) Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex. Science, 265, 1732–1735.PubMedCrossRefGoogle Scholar
  54. Hubel, D. (1988) Eye, Brain and Vision. Scientific American Science Libraries, 22, New York.Google Scholar
  55. Hubel, D. and Wiesel, T.N. (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28: 1041–1059.PubMedGoogle Scholar
  56. Hubel, D. and Wiesel, T.N. (1968) Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195:215–243.PubMedGoogle Scholar
  57. Hubel, D. and Wiesel, T.N. (1972) Laminar and columnar distribution of geniculo-cortical fibres in the Macaque monkey. Journal of Comparative Neurology 146: 421–450.PubMedCrossRefGoogle Scholar
  58. Imamura, K., Richter, H., Fischer, H., Lennerstrand, G., Franzén, O., Rydberg, A., Andersson, J., Schneider, H., Onoe, H., Watanabe, Y. and Längström, B. (1997) Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neuroscience Letters, 225: 173–176.PubMedCrossRefGoogle Scholar
  59. Jakobsson, P. (1985) Binocular interaction in the human visual evoked potential. Linköping University Medical Dissertations No. 192, Linköping, Sweden.Google Scholar
  60. Johnson, K.O., Phillips, J.R., Hsiao, S.S. and Bankman, I.N. (1991) Tactile pattern recognition. In: O. Franzén and J. Westman (eds.) Information processing in the somatosensory system. Macmillan Press, London, pp. 305 – 318.Google Scholar
  61. Johnson, K.O., Hsiao, S.S. and Blake, D.T. (1996) Linearity as the basic law of psychophysics: Evidence from studies of the neural mechanisms of roughness magnitude estimation. In: O. Franzén, R. Johansson and L. Terenius (eds.) Somesthesis and the Neurobiology of the Somatosensory Cortex. Birkhäuser Verlag, Basel, pp. 213–228.CrossRefGoogle Scholar
  62. Kaas, J.H. (1992) Do humans see what monkeys see? Trends in Neurosciences 15: 1–3.PubMedCrossRefGoogle Scholar
  63. Kalikow, D.N. (1967) Psychofit. Unpublished computer program (Fortran) for the analysis of magnitude estimates. Brown University, RI, USA.Google Scholar
  64. Kandel, E.R., Schwartz, J.H. and Jessell, T.M. (1991) Principles of Neural Science. Edward Arnold, London. Kelly, D.H. (1976) Pattern detection and the two-dimensional Fourier transform: Flickering checkerboards and chromatic mechanisms. Vision Research 16: 277–287.Google Scholar
  65. Kennedy, C., Des Rosiers, M.H., Sakurada, O., Shinohara, M., Reich, M., Jehle, J.W. and Sokoloff, L. (1976) Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proceedings of the National Academy of Sciences 73: 4230–4234.CrossRefGoogle Scholar
  66. Kiorpes, L. (1996) Development of contrast sensitivity in normal and amblyopic monkeys. In: F. Vital-Durand, J. Atkinson and O.J. Braddick (eds.) Infant vision. Oxford University Press, Oxford, pp. 3–15.CrossRefGoogle Scholar
  67. Koskela, P.U. (1986) Contrast sensitivity in amblyopia. II. Changes during pleoptic treatment. Acta Ophthal-mologica 64: 563–569.CrossRefGoogle Scholar
  68. Lee, B.B., Virsu, V. and Creutzfeldt, O.D. (1983) Linear signal transmission from prepotentials to cells in the macaque lateral geniculate nucleus. Experimental Brain Research 52: 50–56.CrossRefGoogle Scholar
  69. Livingstone, M. and Hubel, D. (1988) Segregation of form, color, movement and depth: Anatomy, physiology, and perception. Science 240: 740–749.PubMedCrossRefGoogle Scholar
  70. Luck, S.J., Girelli, M., McDermott, M.T. and Ford, M.A. (1997) Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology 33: 64–87.PubMedCrossRefGoogle Scholar
  71. Luck, S., Hillyard, S.A., Moulona, M., Woldorff, M.G., Clark, V.P. and Hawkins, H.L. (1994) Effects of spatial cueing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology and Human Perceptual Performance 20: 87–94.Google Scholar
  72. Lundh, B.L. (1983) Clinical contrast sensitivity. Linköping University Medical Dissertations, No. 144, Linköping, Sweden.Google Scholar
  73. Lynch, J.C., Mountcastle, V.B., Talbot, W.H. and Yin, T.C.T. (1977) Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology 2: 362–389.Google Scholar
  74. Maffei, L. and Fiorentini, A. (1973) The visual cortex as a spatial frequency analyser. Vision Research 13: 1255–1267.PubMedCrossRefGoogle Scholar
  75. Maffei, L. and Fiorentini, A. (1977) Spatial frequency rows in the striate visual cortex. Vision Reserach 17: 257–264.CrossRefGoogle Scholar
  76. Meister, M., Wong, R.O.L., Baylor, D.A., Shatz, C.J. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252: 939–943.PubMedCrossRefGoogle Scholar
  77. Mesulam, M.-M. (1981) A cortical network for directed attention and unilateral neglect. Annals of Neurology 10: 309–325.PubMedCrossRefGoogle Scholar
  78. Merzenich, M.M., Allard, T.T. and Jenkins, W.M. (1991) Neural ontogeny of higher brain function. Implications of some recent neurophysiological findings. In: O. Franzén and Jan Westman (eds.) Information processing in the somatosensory system. Macmillan Press Ltd., London, pp. 193–209.Google Scholar
  79. Merzenich, M.M., Wang, X., Xerri, C and Nudo, R. (1996) Functional plasticity of cortical representations of the hand. In: O. Franzén, R. Johansson and L. Terenius (eds.) Somesthesis and the Neurobiology of the Somatosensory Cortex. Birkhäuser Verlag, Basel, pp. 249–269.CrossRefGoogle Scholar
  80. Mountcastle, V.B., Talbot, W.H., Sakata, H. and Hyvärinen, J. (1969) Cortical neuronal mechanisms in flutter vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. Journal of Neurophysiology 32: 452–484.PubMedGoogle Scholar
  81. Mountcastle, V.B. (1975) The view from within: Pathways to the study of perception. The Johns Hopkins Medical Journal 136: 109–131.PubMedGoogle Scholar
  82. Movshon, J.A., Eggers, H.M., Gizzi, M.S., Hendrickson, A.E., Kiorpes, L. and Boothe, R.G. (1987) Effects of early unilateral blur on the macaque’s visual system: II. Physiological observations. Journal of Neuroscience 7: 1340–1351.PubMedGoogle Scholar
  83. Owens, D.A. (1980) A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings. Vision Research 20: 159–167.PubMedCrossRefGoogle Scholar
  84. Payne, B.R., Lomber, S.G., Alessandro, E., Bullier, V. and Bullier, J. (1996) Reversible deactivation of cerebral network components. Trends in Neurosciences 19: 535–542.PubMedCrossRefGoogle Scholar
  85. Phillips, S. and Stark, L. (1977) Blur: A sufficient accommodative stimulus. Documenta Ophthalmologica 43: 65–89.PubMedCrossRefGoogle Scholar
  86. Posner, M.I. and Raichle, M.E. (1994) Images of Mind. Scientific American Library, New York.Google Scholar
  87. Peters, A., Payne, B.R. and Budd, J. (1994) A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex 4: 215–229.PubMedCrossRefGoogle Scholar
  88. Reiter, H.O. and Stryker, M.P. (1988) Neural plasticity without postsynaptic action potentials: Less active inputs become dominant when kitten visual cortical cells are pharmacologicaly inhibited. Proceedings from the National Academy of Sciences, U.S.A. 85:3623–3627.CrossRefGoogle Scholar
  89. Richter, H., Abdi, S., Han, Y., Lennerstrand, G., Franzén, O., Andersson, J., Pardo, J.V., Schneider, H. and Längström, B. (1998) Higher order control processes and plasticity in neural CNS circuitry subserving negative voluntary accommodation. Investigative Ophthalmology and Visual Science 29: 1047.Google Scholar
  90. Richter, H. and Franzén, O. (1994) Velocity percepts of apparent laser speckle motion modulated by voluntary changes of visual accommodation: Real-time, in-vivo measurements of the accommodative response. Behavioural Brain Research 62: 93–102.PubMedCrossRefGoogle Scholar
  91. Richter, H., Lee, J.E. and Pardo, J. (1995) Central correlates of voluntary visual accommodation in humans measured with H2 15O Water and PET. Presented at the ARVO Annual Meeting, Fort Lauderdale, Florida, May 14-May 19, 1995. Abstracts.Google Scholar
  92. Roelfsema, P.R., König, P., Engel, A.K., Sireteanu, R. and Singer, W. (1994) Reduced synchronization in the visual cortex of cats with strabismic amblyopia. European Journal of Neuroscience 6: 1645–1655.PubMedCrossRefGoogle Scholar
  93. Sadato, N., Pascual-Leone, A., Grafman, J., Ibanez, V., Deiber, M.P., Dold, G. and Hallett, M. (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526–528.PubMedCrossRefGoogle Scholar
  94. Sakata, H., Taira, M., Kusunoki, M., Murata, A. and Tanaka, Y. (1997) The parietal association cortex in depth perception and visual control of hand action. Trends in Neurosciences 20: 350–357.PubMedCrossRefGoogle Scholar
  95. Schade, O.H. Sr. (1956) Optical and photoelectric analogue of the eye. Journal of Optical Society of America 46: 721–739.CrossRefGoogle Scholar
  96. Schiller, P.H. and Malpeli, J.G. (1977) The effect of striate cortex cooling on area 18 cells in the monkey. Brain Research 126: 366–369.PubMedCrossRefGoogle Scholar
  97. Schiller, P.H. (1986) The central visual system. Vision Research 26, 1351–1386.PubMedCrossRefGoogle Scholar
  98. Sclar, G. (1987) Expression of “retinal” contrast gain control by neurons of the cat’s lateral geniculate nucleus. Experimental Brain Research 66: 589–596.CrossRefGoogle Scholar
  99. Shatz, C.J. (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5: 745 – 756.PubMedCrossRefGoogle Scholar
  100. Singer, W. and Gray, C.M. (1995) Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience 18: 555–586.PubMedCrossRefGoogle Scholar
  101. Singer, W., Engel, A.K., Kreiter, A.K., Munk, M.H.J., Neuenschwander, S. and Roelfsema, P.R. (1997) Neuronal assemblies: Necessity, signature and detectability. Trends in Cognitive Sciences 1: 252–260.PubMedCrossRefGoogle Scholar
  102. Spitzer, H. and Richmond, B.J. (1991) Task difficulty: Ignoring, attending to, and discriminating a visual stimulus yield progressively more activity in inferior temporal neurons. Experimental Brain Research 83: 340–348.CrossRefGoogle Scholar
  103. Stark, L.R. and Atchinson, D.A. (1994) Subject instructions and methods of target presentation in accommodation research. Investigative Ophthalmology and Visual Science 35: 528–537.PubMedGoogle Scholar
  104. Stark, L.W., Takahashi, Y. and Zames, G. (1965) Absence of an odd-error signal mechanism in human lens accommodation. IEEE Transactions on Systems Science and Cybernetics SSC-1: 75–83CrossRefGoogle Scholar
  105. Stevens, S.S. (1957) On the psychohysical law. Psychological Review 64: 153–181.PubMedCrossRefGoogle Scholar
  106. Stevens, S.S. (1975) Psychophysics: Introduction to its perceptual, neural and social prospects. Wiley, New York.Google Scholar
  107. Stone, J. (1965) A quantitative analysis of the distribution of ganglion cells in the cat’s retina. Journal of comparative Neurology 124:333–352.CrossRefGoogle Scholar
  108. Sur, M. (1993) Cortical specification: Microcircuits, perceptual identity and an overall perspective. Perspectives on Developmental Neurobiology 1: 109–113.PubMedGoogle Scholar
  109. Talairach, J. and Tournoux, P. (1988) Coplanar stereotactic atlas of the human brain. Thieme, Stuttgart.Google Scholar
  110. Tononi, G., Edelman, G.M. and Sporns, O. (1998) Complexity and coherency: Integrating information in the brain. Trends in Cognitive Sciences 2: 474–483.PubMedCrossRefGoogle Scholar
  111. Troy, J.B. and Enroth-Cugell, C (1993) X and Y ganglion cells inform the cat’s brain about contrast in the retinal image. Experimental Brain Research 93: 383–390.CrossRefGoogle Scholar
  112. Ts’o, D. and Gilbert, C (1988) The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8: 1712–1727.PubMedGoogle Scholar
  113. Ungerleider, L.G. and Haxby, J.V. (1994) “What” and “where” in the human brain. Current Opinion in Neurobiology 4: 157–165.PubMedCrossRefGoogle Scholar
  114. Ungerleider, L.G. and Mishkin, M. (1982) Two cortical visual systems. In: D.J. Ingle, M.A. Goodale and R.J.W. Mansfield (eds.) Analysis of Visual Behaviour. MIT Press, Cambridge, Massachusetts, pp. 549–586.Google Scholar
  115. Van Essen, D.C., Anderson, C.H. and Felleman, D.J. (1992) Information-processing in the primate visual system: An integrated systems perspective. Science 255: 419–423.PubMedCrossRefGoogle Scholar
  116. Weale, R.A. (1982) Focus on Vision. Hodder and Stoughton, London.Google Scholar
  117. Whitsel, B.L. and Franzén, O. (1989) Dynamics of information processing in the somatosensory cortex. In: C von Euler, I. Lundberg and G. Lennerstrand (eds.). Brain and Reading. Macmillan Press, London, pp. 129–137.Google Scholar
  118. Wiesel, T. and Gilbert, C.D. (1991) Neural mechanisms of visual perception. In: D. Man-Kit Lam and C.D. Gilbert (eds) Neuronal Mechanisms of Visual Perception. Gulf Publishing Company, Houston, pp. 7–33.Google Scholar
  119. Wiesel, T.N., Hubel, D.H. and Lam, D.M.K. (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Research 79: 272–279.CrossRefGoogle Scholar
  120. von Noorden, G.K. (1990) Binocular vision and ocular motility. Theory and management of strabismus. C.V. Mosby, St Louis, MO.Google Scholar
  121. Wu, G. (1997) Functional organisation and population behaviour of human peripheral nerve fibres. A microneurography study. Doctoral Dissertation, Karolinska Institute, Huddinge University Hospital, Huddinge, Sweden.Google Scholar
  122. Wurtz, R.H., Goldberg, M.E. and Robinson, D.L. (1982) Brain mechanisms of visual attention. Scientific American 246: 124–135.PubMedCrossRefGoogle Scholar
  123. Yilmaz, H. (1967) Perceptual invariance and the psychophysial law. Perception and Psychophysics 2: 533–538.CrossRefGoogle Scholar
  124. Young, M.P. (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358: 152–155.PubMedCrossRefGoogle Scholar
  125. Young, M.P., Scannel, J.W., Burns, G. and Blakemore, C (1994) Analysis of connectivity: Systems in the cerebral cortex. Review of Neuroscience 5: 227–250.Google Scholar
  126. Zeki, S. and Shipp, S. (1988) The functional logic of cortical connections. Nature 335: 311–317.PubMedCrossRefGoogle Scholar
  127. Zeki, S. (1993) Л vision of the brain. Blackwell, Oxford, England.Google Scholar
  128. Zemon, V., Victor, J.D. and Ratliff, F. (1986) Functional subsystems in the visual pathways of humans characterized using evoked potentials. In: R.Q. Cracco and I. Bodis-Wollner (eds.) Frontiers of Neuroscience. Evoked Potentials. Alan R. Liss, New York, pp. 203–210.Google Scholar
  129. Zigmond, M.J., Bloom, F.E., Landis, S.C., Roberts, J.L. and Squire, L.R. (1998). Eds. Fundamental Neuroscience. Academic Press, London.Google Scholar

Copyright information

© Springer Basel AG 2000

Authors and Affiliations

  • Ove Franzén
    • 1
    • 2
    • 5
  • Gunnar Lennerstrand
    • 1
  • José Pardo
    • 3
    • 4
  • Hans Richter
    • 1
  1. 1.Department of Clinical ScienceKarolinska Institute and Huddinge University HospitalHuddingeSweden
  2. 2.Mid Sweden UniversitySundsvallSweden
  3. 3.Cognitive Neuroimaging Unit, Veterans Affairs Medical CenterUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of PsychiatryUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of Optometry and Vision ScienceUniversity of LatviaRigaLatvia

Personalised recommendations