Advertisement

Plant DNA Fingerprinting and Profiling

  • Pierre Saumitou-Laprade
  • Yves Piquot
  • Olivier Raspé
  • Jacqueline Bernard
  • Klaas Vrieling
Part of the Methods and Tools in Biosciences and Medicine book series (MTBM)

Abstract

DNA fingerprinting has been successfully applied to plants to develop genetic profiles. It has become an important tool in diverse fields of plant population research, e.g. the study of breeding systems (sexual versus asexual reproduction in clonal plant species, estimating of selfing rates, paternity and maternity analysis), genetic relatedness between or within species and populations, assessment of gene flow and gene identification.

Keywords

AFLP Marker cpDNA Haplotype RFLP Probe Clonal Plant Species Methyl Ammonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10: 198–202PubMedCrossRefGoogle Scholar
  2. 2.
    Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeo-graphic studies in plants: problems and prospects. Mol Ecol 7: 465–474CrossRefGoogle Scholar
  3. 3.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414PubMedCrossRefGoogle Scholar
  4. 4.
    Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17: 1105–1109PubMedCrossRefGoogle Scholar
  5. 5.
    Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4: 129–131PubMedCrossRefGoogle Scholar
  6. 6.
    Dellaporta SL, Wood VP, Hicks JB (1983) A plant DNA mini-preparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  7. 7.
    Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Eocus 12: 13–15Google Scholar
  8. 8.
    John ME (1992) An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res 20:2381PubMedCrossRefGoogle Scholar
  9. 9.
    Kim CS, Lee CHS, Shin JS, Chung YS, Hyung NI (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res 25: 1085–1086PubMedCrossRefGoogle Scholar
  10. 10.
    Furukawa K, Bhavadna VP (1983) Influence of amniotic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase: correlation of observed effects with properties of the polysaccharides. Biochim Biophys Acta 740: 466–475PubMedCrossRefGoogle Scholar
  11. 11.
    Fang G, Hammar S, Grumet R (1992) A quick inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52–55PubMedGoogle Scholar
  12. 12.
    Rogers HJ, Burns NA, Parkes HC (1996) Comparison of small-scale methods for the rapid extraction of plant DNA suitable for PCR analysis. Plant Mol Biol Rep 14:170–183CrossRefGoogle Scholar
  13. 13.
    Edwards KC, Jonstone C, Thompson C (1991) A simple and rapid method for the preparation of genomic DNA for PCR analysis. Nucleic Acids Res 19:1349PubMedCrossRefGoogle Scholar
  14. 14.
    Stommel JR, Panta GR, Levi A, Rowland LJ (1997) Effect of gelatin and BSA on the amplification reaction for generating RAPDs. Biotechniques 22:1064–1066PubMedGoogle Scholar
  15. 15.
    Dumoulin-Lapegue S, Pemonge M-H, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6: 393–397CrossRefGoogle Scholar
  16. 16.
    Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogenies. In: PS Soltis, DE Soltis, JJ Doyle (eds): Molecular systematics of plants. Chapman and Hall, New York, 14–35CrossRefGoogle Scholar
  17. 17.
    Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: non-coding versus rbcL sequences. Mol Biol Evol 11: 769–777PubMedGoogle Scholar
  18. 18.
    Forcioli D, Saumitou-Laprade P, Michaelis G, Cuguen J (1994) Chloroplast DNA polymorphism revealed by a fast, nonradioactive method in Beta vulgaris ssp. maritima. Mol Ecol 3:173–176CrossRefGoogle Scholar
  19. 19.
    Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci USA 94: 9996–10001PubMedCrossRefGoogle Scholar
  20. 20.
    El Mousadik A, Petit RJ (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 5: 547–555CrossRefGoogle Scholar
  21. 21.
    Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92: 7759–7763PubMedCrossRefGoogle Scholar
  22. 22.
    Weising K, Kaemmer D, Weigand F, Epplen JT, Kahl G (1992) Oligonucleotide fingerprinting reveals various probe-dependent levels of informativeness in chickpea (Cicer arietinum). Genome 35: 436–442CrossRefGoogle Scholar
  23. 23.
    Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40: 25–33PubMedCrossRefGoogle Scholar
  24. 24.
    Rus-Kortekaas W, Smulders MJM, Arens P, Vosman B (1994) Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome 37: 375–381PubMedCrossRefGoogle Scholar
  25. 25.
    Nybom H, Hall HK (1991) Minisatellite DNA “fingerprinting” can distinguish Rubus cultivars and estimate their degree of relatedness. Euphytica 53:107–114CrossRefGoogle Scholar
  26. 26.
    Jung C, Pillen K, Frese L, Fähr S, Melchinger AE (1993) Phylogenetic relationships between cultivated and wild species of the genus Beta revealed by DNA fingerprinting. Theor Appl Genet 86: 449–457CrossRefGoogle Scholar
  27. 27.
    Weising K, Ramser D, Kaemmer D, Kahl G (1994) Multilocus DNA fingerprinting and genetic relatedness in plants: a case study with banana and tomato. In: B Schierwater, B Streit, GP Wagner, R De-Salle (eds): Molecular ecology and evolution: approaches and applications. Birkhäuser Verlag, Basel, 45–59Google Scholar
  28. 28.
    Van Heusden AW, Van de Voort JR, Bachmann K (1991) Oligo-(GATA) fingerprints identify clones in asexual dandelion Taraxacum (Asteraceae). Fingerprint News 3: 13–15Google Scholar
  29. 29.
    Piquot Y, Saumitou-Laprade P, Petit D, Vernet P, Epplen JT (1996) Genotypic diversity revealed by allozymes and oligonucleotide DNA fingerprinting in French populations of the macrophyte Sparganium erectum. Mol Ecol 5: 251–258PubMedGoogle Scholar
  30. 30.
    Vrieling K, Saumitou-Laprade P, Meelis E, Epplen JT (1997) Multilocus DNA fingerprints in the plant Cynoglossum officinale L. and their use in the estimation of seifing. Mol Ecol 6: 587–594CrossRefGoogle Scholar
  31. 31.
    Pena SDJ, Chakraborty R (1994) Paternity testing in the DNA era. Trends Genet 10: 204–209PubMedCrossRefGoogle Scholar
  32. 32.
    Russel JR, Fuller JD, Macaulay M, Harz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714–722CrossRefGoogle Scholar
  33. 33.
    Schondelmaier J, Steinrücken G, Jung C (1996) Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breeding 115: 231–237CrossRefGoogle Scholar
  34. 34.
    Meksem K, Leister D, Peleman J, Zabeau M, Salamini F, Gebhardt C (1995) A high resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249: 74–81PubMedCrossRefGoogle Scholar
  35. 35.
    Qi X, Lindhout P (1997) Development of AFLP markers in Barley. Mol Gen Genet 254:330–336PubMedCrossRefGoogle Scholar
  36. 36.
    Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critical endengered plant, using AFLP markers. Mol Ecol 5: 735–745PubMedCrossRefGoogle Scholar
  37. 37.
    Couch JA, Fritz PJ (1990) Isolation of DNA from plants high in polyphenolics. Plant Mol Biol Rep 8: 8–12CrossRefGoogle Scholar
  38. 38.
    Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family of proteaceae. Plant Mol Biol Rep 12:106–109CrossRefGoogle Scholar
  39. 39.
    Rether B, Delmas G, Laouedj A (1993) Isolation of polysaccharide-free DNA from plants. Plant Mol Biol Rep 11: 333–337CrossRefGoogle Scholar
  40. 40.
    Do N, Adams RP (1991) A simple technique for removing plant polysaccharide contaminants from DNA. Biotechniques 10: 162–166PubMedGoogle Scholar
  41. 41.
    Kolodner R, Tewari KK (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402: 372–390PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1999

Authors and Affiliations

  • Pierre Saumitou-Laprade
  • Yves Piquot
  • Olivier Raspé
  • Jacqueline Bernard
  • Klaas Vrieling

There are no affiliations available

Personalised recommendations