Evolution and multi-functionality of the chitin system

  • G. P. Wagner
Part of the Experientia Supplementum book series (EXS, volume 69)


Chitin, that is, the β-1, 4 linked polysaccharide of N-acetylglucosamine, is best known as a cell wall component of fungi and as skeletal material of invertebrates. In recent years this simple picture has changed dramatically. Three developments have taken place: the discovery of chitinous tissues in vertebrates, the molecular analysis of the chitinsynthase genes, and the discovery that chitin derivatives play a crucial role in the interaction between higher plants and symbiotic bacteria. In this paper the methods for chitin detection and the current data on the evolution of chitin synthesis are reviewed. In addition, data is summarized which suggest that chitin synthesis may serve roles other than the production of skeletal material. In particular, anecdotal evidence suggests that chitin derivatives may play a role as signals in plant as well as animal development. Two major unresolved questions are identified: 1) Is there historical continunity of all the chitin synthesizing systems in protists, animals and, in particular, the deuterostome animals. 2) Are chitin derivatives actually involved in the development of plants and animals?


Wheat Germ Agglutinin Nodulation Factor Peritrophic Membrane Chitin Synthesis Chitin Oligosaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, A.K., Desai, N.N., Neuberger, A. and Creeth, J.M. (1978) Properties of potato lectin and the nature of its glycoprotein linkages. Biochem. J. 171: 665–674.PubMedGoogle Scholar
  2. Anno, K., Otsuka, K. and Seno, N. (1974) A chitin sulfate-like polysaccharide from the test of the tunicate Halocynthia roretzi. Biochem. Biophy. Acta 362: 215–219.CrossRefGoogle Scholar
  3. Armstrong, W.G., Dilly, P.N. and Urbanek, A. (1984) Collagen in the pterobranch coenecium and the problem of graptolite affinities. Lethaia 17: 145–152.CrossRefGoogle Scholar
  4. Atkinson, E.M. and Long, S.R. (1992) Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes. Mol. Plant-Microbe Inter. 5: 439–442.CrossRefGoogle Scholar
  5. Au-Young, J. and Robbins, P.W. (1990) Isolation of a chitin synthase gene (CHSI) from Candida albicans by expression in Saccharomyces cerevisiae. Mol. Microbiol. 4: 197–207.PubMedCrossRefGoogle Scholar
  6. Baikova, N.A., Gvozdev, V.A. and Kramerov, A.A. (1993) Tissue localization of chitino proteins during the development of Drosophila melanogaster. Ontogenez 24: 33–42.PubMedGoogle Scholar
  7. Benhamou, N. and Asselin, A. (1989) Attempted localization of a substrate for chitinases in plant cells reveals abundant N-acetyl-D-glucosamine residues in secondary walls. Biol. Cell 61: 341–350.Google Scholar
  8. Benjaminson, M.A. (1969) Conjugates of chitinase with flourescein isothiocyanate or lissamine rhodamine as specific stains for chitin in situ. Stain Technol. 44: 27–31.PubMedGoogle Scholar
  9. Bhavanandan, V.P. and Katlic, A.W. (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J. Biol. Chem. 254: 4000–4008.PubMedGoogle Scholar
  10. Bowen, A.R., Chen-Wu, J.L., Momany, M., Young, R., Szaniszlo, P.J. and Robbins, P.W. (1992) Classification of fungal chitin synthases. Proc. Natl. Acad. Sci. USA 89: 519–523.PubMedCrossRefGoogle Scholar
  11. Briza, P., Ellinger, A., Winkler, G. and Breitenbach, M. (1988) Chemical composition of the yeast ascospore wall. J. Biol. Chem. 263: 11569–11574.PubMedGoogle Scholar
  12. Briza, P., Breitenbach, M., Ellinger, A. and Segall, J. (1990) Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes & Develop. 4: 1775–1789.CrossRefGoogle Scholar
  13. Brusca, R.C. and Brusca, G.J. (1990) Invertebrates. Sinauer Associates Inc., Sunderland, Massachusetts.Google Scholar
  14. Buck, K.R. (1989) Phylum Zoomastigina, class choanomastigoides (choanoflagellates). In: L. Margulis, J.O. Melkonian and D.J. Chapman (eds): Handbook of Protoctista. Jones and Bartlett Publishers, Boston, Massachusetts.Google Scholar
  15. Bulawa, C.E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W.L. and Robbins, P.W. (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46: 213–225.PubMedCrossRefGoogle Scholar
  16. Bulawa, C.E. and Osmond, B.C. (1990) Chitin synthase I and chitin synthase II are not required for chitin synthesis in vivo in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87: 7424–7428.PubMedCrossRefGoogle Scholar
  17. Bulawa, C.E. and Wasco, W. (1991) Chitin and nodulation. Nature 353: 710.PubMedCrossRefGoogle Scholar
  18. Bulawa, C.E. (1992) CSD2, CSD3, and CSD4, Genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated protein in Rhizobium and Xenopus laevis. Mol. Cell. Biol. 12: 1764–1776.PubMedGoogle Scholar
  19. Bulawa, C.J. (1993) Genetics and molecular biology of chitin synthesis in fungi. Ann. Rev. Microbiol. 47: 505–534.CrossRefGoogle Scholar
  20. Cabib, E. (1987) The synthesis and degradation of chitin. Adv. Enzymol. 59: 59–101.PubMedGoogle Scholar
  21. Cohen, E. (1987) Chitin biochemistry: Synthesis and inhibition. Annu. Rev. Entomol. 32: 71–93.CrossRefGoogle Scholar
  22. DeJong, A.J., Cordewener, J., Schiavo, F.L., Terzi, M., Vandekerckhove, J., VanKammen, A. and DeVries, S.C. (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425–433.Google Scholar
  23. Dénarié, J. and Cullimore, J. (1993) Lipo-oligosaccharide nodulation factors: A new class of signaling molecules mediating recognition and morphogenesis. Cell 74: 951–954.PubMedCrossRefGoogle Scholar
  24. Dilly, P.N. (1971) Keratin-like fibers in the hemichordate Rhabdopleura compacta. Z. Zellforsch. 117: 502–515.PubMedCrossRefGoogle Scholar
  25. Erwin, D.H. (1991) Metazoan Phylogeny and the Cambrian Radiation. Trends Ecol. Evol. 6: 131–134.PubMedCrossRefGoogle Scholar
  26. Fisher, R. and Long, S. (1992) Rhizobium-plant signal exchange. Nature 357: 655–660.PubMedCrossRefGoogle Scholar
  27. Füller, H. (1965) Dichroitische Anfärbung von Chitin mit Thiazinrot, ein histochemischer Chitinnachweis. Zool. Anz. 174: 125–131.Google Scholar
  28. Goldstein, I.J. and Portez, R.D. (1986) Isolation, physicochemical characterization, and arbohydrate-binding specificity of lectins. In: I.E. Liener, M. Sharon and I.J. Goldstein (eds): The Lectins: Properties, Functions, and Applications in Biology and Medicine. Academic Press, New York, pp. 33–247.Google Scholar
  29. Gowri, N., Sundara-Rajulu, G. and Aruchami, M. (1982) Presence of γ-chitin in the peritrophic membrane of tunicates. In: S. Hirano and S. Tokura (eds): Proceedings of the Second International Conference on Chitin and Chitosan. The Japanese Society of Chitin and Chitosan, Tottoni, Japan, pp. 77–81.Google Scholar
  30. Hart, P.J., Monzingo, A.F., Ready, M.P., Ernst, S.R. and Robertus, J.D. (1993) Crystal structure of an endochitinase from Hordeum vulgare L. seeds. J. Mol. Biol. 229: 189–193.PubMedCrossRefGoogle Scholar
  31. Horst, M.N. (1990a) Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs. J. Exp. Zool. 256: 242–254.PubMedCrossRefGoogle Scholar
  32. Horst, M.N. (1990b) Molecular and cellular aspects of chitin synthesis in larval Artemia. In: A.H. Warner, T.H. MacRae and J.C. Bagshaw (eds): Cell and Molecular Biology of Artemia Development. Springer Verlag, Heidelberg, New York, pp. 59–76.Google Scholar
  33. Hyman, L.H. (1958) The occurrence of chitin in the lophophorate phyla. Biol. Bull. 114: 106–112.CrossRefGoogle Scholar
  34. Jacobs, T.W., Egelhoff, T.T. and Long, S.R. (1985) Physical and genetic map of a Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. J. Bacteriol. 162: 469–476.PubMedGoogle Scholar
  35. Jeuniaux, C. (1963) Chitine et Chitinolyse. Masson, Paris.Google Scholar
  36. Kramerov, A.A. and Gvozdev, V.A. (1986) Glycoproteins containing sulfated chitin-like carbohydrate moiery are synthesized in an established Drosophila melanogaster cell line. Insect. Biochem. 16: 417–432.CrossRefGoogle Scholar
  37. Lake, J.A. (1990) Origin of the metazoa. Proc. Natl. Acad. Sci. USA 87: 763–766.PubMedCrossRefGoogle Scholar
  38. Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J.C. and Dénarié, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.PubMedCrossRefGoogle Scholar
  39. Leung, D.W.M. (1992) Involvement of plant chitinase in sexual reproduction of higher plants. Phytochem. 31: 1899–1900.CrossRefGoogle Scholar
  40. Lévesque, J.-P., Sansilvestri, P., Hatzfeld, A. and Hatzfeld, J. (1991) Immunocytochemical labeling of chitin in the cell walls of zoopathogenic fungi. BioFeedback 11: 318–322.Google Scholar
  41. Long, S.R. (1984) Genetics of Rhizobium nodulation. In: T. Kosuge and E. Nester (eds): Plant-microbe Interactions. Macmillan Publishing Co., Inc., New York, pp. 256–306.Google Scholar
  42. Monsigny, M., Sene, C., Obrenovitch, A., Roche, A.-C., Delmotte, F. and Boschetti, E. (1979) Properties of succinylated wheat-germ agglutinin. Eur. J. Biochem. 98: 39–45.PubMedCrossRefGoogle Scholar
  43. Monsigny, M., Roche, A.-C., Sene, C., Maget-Dana, R. and Delmotte, F. (1980) Sugar-lectin interactions: How does wheat-germ agglutinin bind sialoglycoconjugates? Eur. J. Biochem. 104: 147–153.PubMedCrossRefGoogle Scholar
  44. Mulisch, M. (1993) Chitin in protistan organisms. Distribution, synthesis and deposition. Eur. J. Protistol. 29: 1–18.PubMedCrossRefGoogle Scholar
  45. Mulisch, M., Schermuly, G., Walther, M. and Markmann-Mulisch, U. (1993) Chitin synthesis in the ciliated protozoan Eufolliculina uhligi In: R.A.A. Muzzarelli (ed.): Chitin Enzymology. European Chitin Society, Ancona, Italy, pp. 119–128.Google Scholar
  46. Muzzarelli, R.A.A. (1985) Chitin. In: G.O. Aspinall (ed.): Polysaccharides. Academic Press Inc., Orlando, pp. 417–450.Google Scholar
  47. Orlean, P. (1987) Two chitin synthases in Saccharomyces cerevisiae. J. Biol. Chem. 262: 5732–5739.PubMedGoogle Scholar
  48. Peters, B.P., Ebisu, S., Goldstein, I.J. and Flashner, M. (1979) Interaction of wheat germ agglutinin with sialic acid. Biochem. 18: 5505–5511.CrossRefGoogle Scholar
  49. Peters, W. (1966) Chitin in tunicata. Experientia 22: 1–3.CrossRefGoogle Scholar
  50. Peters, W. and Latka, I. (1986) Electron microscopic localization of chitin using colloidal labelled with wheat germ agglutinin. Histochemistry 84: 155–160.PubMedCrossRefGoogle Scholar
  51. Rähr, H. (1982) Ultrastructure of gill bars of Branchiostoma lanceolatum with special reference to gill skeleton and blood vessels (Cephalochordata). Zoomorphol. 99: 167–180.CrossRefGoogle Scholar
  52. Richards, A.G. (1951) The Integument of arthropods. University of Minnesota Press, Minneapolis.Google Scholar
  53. Robbins, P.W., Albright, C. and Benfield, B. (1988) Cloning and expression of a Strepto-myces plicatus chitinase (Chitinase-63) in Escherichia coli. J. Biol. Chem. 263: 443–447.PubMedGoogle Scholar
  54. Rosa, F., Sargent, T.D., Rebbert, M.L., Michaels, G.S., Jamrich, M., Grunz, H., Jonas, E., Winkles, J.A. and Dawid, I.B. (1988) Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis. Develop. Biol. 129: 114–123.PubMedCrossRefGoogle Scholar
  55. Rudall, K.M. (1955) The distribution of collagen and chitin. Symposia Soc. Exp. Biol. 9: 4–71.Google Scholar
  56. Rudall, K.M. and Kenchington, W. (1973) The chitin system. Biol. Rev. 49: 597–636.CrossRefGoogle Scholar
  57. Sannasi, A. and Hermann, H.R. (1970) Chitin in the cephalochordata, Branchisotoma floridae. Experientia 26: 351–352.CrossRefGoogle Scholar
  58. Sargent, T.D. and Dawid, I.B. (1983) Differential gene expression in the gastrula of Xenopus laevis. Science 222: 135–139.PubMedCrossRefGoogle Scholar
  59. Schulze, P. (1922) Über Beziehungen zwischen pflanzlichen und tierischen Skelettsubstanzen und über Chitinreaktionen. Biologisches Zentralblatt 42: 388–394.Google Scholar
  60. Sietsma, J.H. and Wessels, J.G.H. (1990) The occurrence of glucosaminoglycan in the wall of Schizosaccharomyces pombe. J. Gen. Microbiol. 136: 2261–2265.PubMedCrossRefGoogle Scholar
  61. Silverman, S.J. (1989) Similar and different domains of chitin synthases 1 and 2 of S. cerevisiae: Two isozymes with distinct function. Yeast 5: 459–467.PubMedCrossRefGoogle Scholar
  62. Spaink, H.P., Sheeley, D.M., vanBrussel, A.A.N., Glushka, J., York, W.S., Tak, T., Geiger, O., Kennedy, E.P., Reinhold, V.N. and Lugtenberg, B.J.J. (1991) A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130.PubMedCrossRefGoogle Scholar
  63. Spaink, H.P., Wijfjes, A.H.M., Vliet, T.B.v., Kijne, J.W. and Lugtenberg, B.J.J. (1993) Rhizobial lipo-oligosaccharide signals and their role in plant morphogenesis; are analogous lipophilic chitin derivatives produced by the plant? Aust. J. Plant Physiol. 20: 381–392.CrossRefGoogle Scholar
  64. Sundara-Rajulu, G. and Gowri, N. (1978) Chitin from marine organisms and its use as an adhesive. In: R.A.A. Muzzarelli and E.R. Pariser (eds): Proceedings of the First International Conference on Chitin j Chitosan. MIT Press, Cambridge, Massachusetts, pp. 430–435.Google Scholar
  65. Sundara-Rajulu, G., Jeuniaux, Ch., Poulicek, M. and Voss-Foucart, M.F. (1982) Comparative value of chitosan test and enzymatic method for chitin detection. In: S. Hirano and S. Tokura (eds): Proceedings of the Second International Conference on Chitin and Chitosan. The Japanese Society of Chitin and Chitosan, Tottoni, Japan, pp. 1–4.Google Scholar
  66. Telford, M.J. and Holland, P.W.H. (1993) The phylogenetic affinities of the chaetognaths: A molecular analysis. Mol. Biol. Evol. 10: 660–676.PubMedGoogle Scholar
  67. Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., deBilly, F., Promé, J.-C. and Dénarié, J. (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673.CrossRefGoogle Scholar
  68. Valdivieso, M.H., Mol, P.C., Shaw, J.A., Cabib, E. and Duran, A. (1991) CAL1, A gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J. Cell Biol. 114: 101–109.PubMedCrossRefGoogle Scholar
  69. Wagner, G.P., Lo, J., Laine, R. and Almeder, M. (1993) Chitin in the epidermal cuticle of a vertebrate (Paralipophrys trigloides, Blenniidae, Teleostei). Experientia 49: 317–319.CrossRefGoogle Scholar
  70. Wainright, P.O., Hinkle, G., Sogin, M.L. and Stickel, S.K. (1993) Monophyletic origins of the metazoa: An evolutionary link with fungi. Science 260: 340–342.PubMedCrossRefGoogle Scholar
  71. Walker, A.N., Garner, R.E. and Horst, M.N. (1990) Immunocytochemical detection of chitin in Pneumocystis carnii. Infect. Immun. 58: 412–415.PubMedGoogle Scholar
  72. Walker, A.N., Garner, R.E. and Horst, M.N. (1991) Immunocytochemical labeling of chitin in the cell walls of zoopathogenic fungi. BioTechniques 11: 318–322.PubMedGoogle Scholar
  73. Whitear, M. (1970) The skin surface of bony fishes. J. Zool. 160: 437–454.CrossRefGoogle Scholar
  74. Willmer, P. (1990) Invertebrate Relationships. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  75. Yarden, O. and Yanofsky, C. (1991) Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Gene Dev. 5: 2420–2430.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • G. P. Wagner
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations