Skip to main content

Allozymes in mammalian population genetics and systematics: Indicative function of a marker system reconsidered

  • Chapter

Part of the book series: Experientia Supplementum ((EXS,volume 69))

Summary

Data from an extensive research project on lagomorphs were compiled and re-analyzed from a synoptical point of view for examining the indicative function of allozymic variation. Empirical data suggested the Shannon-Weaver information index to be a better indicator of allelic diversity than expected average heterozygosity. There were differences in polymorphism among various structural and physiological classes of enzymes. Reliable estimates of gene diversity and genetic distances can be obtained only if more than 30 loci are examined. At the population level, allozymic diversity was not related to morphological variation. It was, however, indicative of increased developmental homeostasis as assessed by overall fluctuating asymmetry in non-metric morphological traits. Allozymes served well for fully resolving genetic differentiation among populations and for assessing levels of migration, whereas mtDNA and morphological data provided only additional information. The results are discussed with respect to data from other mammalian taxa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf, F.W and Leary, R.F. (1986) Heterozygosity and fitness in natural populations of animals. In: M.E. Soulé (ed): Conservation Biology — The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, Massachusetts, pp. 57–76.

    Google Scholar 

  • Apollonio, M. and Hartl, G.B. (1993) Are biochemical genetic variation and mating systems related in large mammals? In: G.B. Hartl and J. Markowski (eds): Ecological Genetics in Mammals. Acta theriol. 38, Supplement 2, pp. 175–185.

    Google Scholar 

  • Berry, R.J. and Jakobson, M.E. (1975) Ecological genetics of an island population of the house mouse (Mus musculus). J. Zool. 175: 523–540.

    Article  Google Scholar 

  • Buth, D.G. (1984) The application of electrophoretic data in systematic studies. Ann. Rev. Ecol. Syst. 15: 501–522.

    Article  Google Scholar 

  • Clark, A.G. and Koehn, R.K. (1992) Enzymes and adaptation. In: R.J. Berry, T.J. Crawford and G.M. Hewitt (eds): Genes in Ecology. Blackwell, Oxford, pp. 193–228.

    Google Scholar 

  • Fuerst, P.A. and Maruyama, T. (1986) Considerations on the conservation of alleles and of genic heterozygosity in small managed populations. Zoo Biol. 5: 171–179.

    Article  Google Scholar 

  • Gillespie, J.H. and Langley, C.H. (1974) A general model to account for enzyme variation in natural populations. Genetics 76: 837–884.

    PubMed  CAS  Google Scholar 

  • Gillespie, J.H. (1992) The Causes of Molecular Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Gorman, G.C. and Renzi, J., Jr. (1979) Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia 2: 242–249.

    Article  Google Scholar 

  • Grillitsch, M., Hartl, G.B., Suchentrunk, F. and Willing, R. (1992) Allozyme evolution and the molecular clock in the Lagomorpha. Acta theriol. 37: 1–13.

    Google Scholar 

  • Hadrys, H., Balick, M. and Schierwater, B. (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, G.B. and Höger, H. (1986) Biochemical variation in purebred and crossbred strains of domestic rabbits (Oryctolagus cuniculus L.). Genet. Res. 48: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, G.B. (1987) Biochemical differentiation between the wild rabbit (Oryctolagus cuniculus L.), the domestic rabbit and the brown hare (Lepus europaeus Pallas). Z. zool. Syst. Evolut.-forsch. 25: 309–316.

    Article  Google Scholar 

  • Hartl, G.B., Markowski, J., Kovacs, G., Grillitsch, M. and Willing, R. (1990a) Biochemical variation and differentiation in the brown hare (Lepus europaeus) of Central Europe. Z. Säugetierk. 55: 186–193.

    Google Scholar 

  • Hartl, G.B., Willing, R., Lang, G., Klein, F. and Koller, J. (1990b) Genetic variability and differentiation in red deer (Cervus elaphus L.) of Central Europe. Genet. Sel. Evol. 22: 289–306.

    Article  Google Scholar 

  • Hartl, G.B. (1991) Genetic polymorphism of sorbitol dehydrogenase in the brown hare and the distribution of the variation in Central Europe. Biochem. Genet. 29: 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, G.B., Markowski, J., Swiatecki, A., Janiszewski, T. and Willing, R. (1992) Genetic diversity in the Polish brown hare Lepus europaeus, Pallas, 1778: implications for conservation and management. Acta theriol. 37: 15–25.

    Google Scholar 

  • Hartl, G.B., Suchentrunk, F., Nadlinger, K. and Willing, R. (1993) An integrative analysis of genetic differentiation in the brown hare (Lepus europaeus), based on morphology, allozymes, and mitochondrial DNA. In: G.B. Hartl and J. Markowski (eds): Ecological Genetics in Mammals. Acta theriol. 38, Supplement 2, pp. 33–57.

    Google Scholar 

  • Hartl, G.B. and Pucek, Z. (1994) Genetic depletion in the European bison (Bison bonasus) and the significance of electrophoretic heterozygosity for conservation. Conservation Biology 8: 167–174.

    Article  Google Scholar 

  • Hard, G.B., Suchentrunk, F., Willing, R. and Petznek, R. Allozyme heterozygosity and fluctuating asymmetry in the brown hare (Lepus europaeus): a test of the developmental homeostasis hypothesis. Heredity; submitted.

    Google Scholar 

  • Hillis, D.M. and Moritz, C. (1990) Molecular Systematics. Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Johnson, G.B. (1974) Enzyme polymorphism and metabolism. Science 184: 28–37.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lande, R. and Barrowclough, G.F. (1987) Effective population size, genetic variation, and their use in population management. In: M.E. Soulé (ed.): Viable Populations for Conservation. Cambridge University Press, Cambridge, pp. 87–123.

    Chapter  Google Scholar 

  • Leberg, P.L. (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46: 477–494.

    Article  Google Scholar 

  • Lewontin, R.C. (1972) The apportionment of human diversity. Evol. Biol. 6: 381–398.

    Article  Google Scholar 

  • Lewontin, R.C. (1974) The Genetic Basis of Evolutionary Change. Columbia University Press, New York.

    Google Scholar 

  • Mitton, J.B. and Grant, M.C. (1984) Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.

    Article  Google Scholar 

  • Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nevo, E., Beiles, A. and Ben-Shlomo, R. (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In: G.S. Mani (ed.): Evolutionary Dynamics of Genetic Diversity. Lecture Notes in Biomathematics. Springer Verlag, Berlin, pp. 13–213.

    Chapter  Google Scholar 

  • Novak, J.M., Rhodes, O.E. Jr., Smith, M.H. and Chesser, R.K. (1993) Morphological asymmetry in mammals: Genetics and homeostasis reconsidered. In: G.B. Hartl and J. Markowski (eds): Ecological Genetics in Mammals. Acta theriol. 38, Supplement 2, pp. 7–18.

    Google Scholar 

  • O’Brien, S.J., Gail, M.H. and Levin, D.L. (1980) Correlative genetic variation in natural populations of cats, mice and men. Nature 288: 580–583.

    Article  PubMed  Google Scholar 

  • Palmer, A. R. and Strobeck, C. (1986) Fluctuating asymmetry: Measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  • Sage, R.D. and Wolff, J.O. (1986) Pleistocene glaciations, fluctuating ranges and low genetic variability in a large mammal (Ovis dalli). Evolution 40: 1092–1095.

    Article  Google Scholar 

  • Schnell, G.D. and Seiander, R.K. (1981) Environmental and morphological correlates of genetic variation in mammals. In: M.H. Smith and J. Joule (eds): Mammalian Population Genetics. The University of Georgia Press, Athens, pp. 60–99.

    Google Scholar 

  • Slatkin, M. (1981) Estimating levels of gene flow in natural populations. Genetics 99: 323–335.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. (1985) Rare alleles as indicators of gene flow. Evolution 39: 53–65.

    Article  Google Scholar 

  • Soulé, M.E. and Yang, S.Y. (1973) Genetic variation in side-blotched lizards on islands in the Gulf of California. Evolution 27: 593–600.

    Article  Google Scholar 

  • Soulé, M.E., Yang, S.Y., Weiler, M.G.W. and Gorman, G.C. (1973) Island lizards: the genetic-phenetic variation correlation. Nature 242: 191–193.

    Article  PubMed  Google Scholar 

  • Suchentrunk, F. (1993) Variability of minor tooth traits and allozymic diversity in brown hare (Lepus europaeus) populations. In: G.B. Hartl and J. Markowski (eds): Ecological Genetics in Mammals. Acta theriol. 38, Supplement 2, pp. 59–69.

    Google Scholar 

  • Suchentrunk, F., Willing, R. and Hartl, G.B. (1994) Non-metrical polymorphism of the first lower premolar (P1) in Austrian brown hares (Lepus europaeus): a study on regional differentiation. J. Zool. 232: 79–91.

    Article  Google Scholar 

  • Ward, R.D. (1977) Relationship between enzyme heterozygosity and quaternary structure. Biochem. Genet. 15: 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Ward, R.D. and Skibinski, D.O.F. (1988) Evidence that mitochondrial isozymes are genetically less variable than cytoplasmatic isozymes. Genet. Res., Camb. 51: 121–127.

    Article  CAS  Google Scholar 

  • Wright, S. (1978) Evolution and the Genetics of Populations, Vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Hartl, G.B., Willing, R., Nadlinger, K. (1994). Allozymes in mammalian population genetics and systematics: Indicative function of a marker system reconsidered. In: Schierwater, B., Streit, B., Wagner, G.P., DeSalle, R. (eds) Molecular Ecology and Evolution: Approaches and Applications. Experientia Supplementum, vol 69. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7527-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7527-1_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7529-5

  • Online ISBN: 978-3-0348-7527-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics