The multienzyme complex cyclooxygenase converts free arachidonic acid predominantly to prostanoids. These prostanoids (prostaglandins F, E2, D2, I2 and thromboxane A2) are not stored in cells but are produced by de novo synthesis following a relevant stimulus (1). In brief, biosynthesis can be subdivided into the following three stages (Figure 1): a) Release of arachidonic acid from membrane phospholipids by phospholipases, the most significant being phospholipase A2. b) Oxygenation of free arachidonic acid by the membrane-bound multi-enzyme complex cyclooxygenase (prostaglandin endoperoxide G/H synthase) to the cyclic endoperoxide PGH2. c) Metabolism of PGH2 to specific biologically active end products (PGF, PGE2, PGI2, PGD2, TXA2) by either a thromboxane or prostacyclin synthase, or PGF reductase, or PGH-PGD2 and PGH-PGE2 isomerases. TXA2 and PGI2 are very unstable and are rapidly, nonenzymatically degraded to TXB2 and 6-keto-PGF respectively. Two additional cyclooxygenase products are malondialdehyde (MDA) and hydroxy-heptadecatrienoic acid (HHT) but both are biologically inert.


Airway Smooth Muscle Human Airway Human Airway Smooth Muscle Human Airway Smooth Muscle Cell Late Asthmatic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J 1989; 259: 315–24.PubMedGoogle Scholar
  2. 2.
    Coleman RA, Kennedy I, Humphrey PPA, Bunce KT, Lumley P. Prostanoids and their receptors. In: Hansch C, Sammes PG, Taylor JB, editors. Comprehensive Medicinal Chemistry. Oxford: Pergamon Press, 1990: 643–714.Google Scholar
  3. 3.
    Coleman RA, Humphrey PPA. Prostanoid receptors: Their function and classification. In: Vane JR, O’Grady J, editors. Therapeutic Applications of Prostaglandins. London: Edward Arnold, 1993: 15–36.Google Scholar
  4. 4.
    Lumley P, White BP, Humphrey PPA, GR 32191 a highly portent and specific thromboxane A2 receptor blocking drug on platelets and vascular and airways smooth muscle in vitro. Br J Pharmacol, 1989; 97: 783–94.PubMedGoogle Scholar
  5. 5.
    McKenniff MG, Norman P, Cuthbert NJ, Gardiner PJ. BAY u3405 a potent and selective thromboxane A2 receptor antagonist on airway smooth muscle in vitro. Br J Pharmacol 1991; 104: 585–90.PubMedGoogle Scholar
  6. 6.
    Norman P, Cuthbert NJ, McKenniff MG, Gardiner PJ. The thromboxane receptors of rat and guinea-pig lung. Eur J Pharmacol 1992; 229: 171–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Iwamoto I, Ra C, Sato T, Tomioka H, Yoshida S. Thromboxane A2 production in allergen-induced immediate and late asthmatic response. J Asthma, 1988; 25: 117–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Hanky SP. Prostaglandins and the lung. Lung 1986; 164: 65–77.CrossRefGoogle Scholar
  9. 9.
    Wenzel SE, Westcott JY, Smith HR, Larsen GL. Spectrum of prostanoid release after bronchoalveolar allergen challenge in atopic asthmatics and in control groups. Am Res Respir Dis 1989; 139: 450–47.CrossRefGoogle Scholar
  10. 10.
    Liu MC, Bleecker ER, Lichtenstein LM, Kagey-Sobotka A, Niv Y, McLemore TL et al. Evidence for elevated levels of histamine, prostaglandin D2 and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis 1990; 142: 126–32.PubMedGoogle Scholar
  11. 11.
    Gardiner PJ. Eicosanoids and airway smooth muscle. Pharmac Ther 1989; 44: 1–62.CrossRefGoogle Scholar
  12. 12.
    Gardiner PJ. The effects of some natural prostaglandins on isolated human circular bronchial muscle. Prostaglandins 1975; 10: 607–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Strandberg K, Hedqvist P. Bronchial effect of some prostaglandin E and F analogues. Acta Physiol Scand 1977; 100: 172–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Hutast I, Hadhazy P, Debreezeni L, Uizi ES. Relaxation of human isolated bronchial smooth muscle. Lung 1981; 159: 153–61.CrossRefGoogle Scholar
  15. 15.
    Collier HOJ, Gardiner PJ. Pharmacology of airways smooth muscle. In: Bruley DM, Clarke SW, Cuthbert MF, Paterson JW, Shelley JH, editors. Evaluation of bronchodilator drugs. Asthma Research Council symposium 1974; 17-27.Google Scholar
  16. 16.
    Gardiner PJ, Collier HOJ. Specific receptors for prostaglandins in airways Prostaglandins 1980; 19: 819–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Gardiner PJ. Characterisation of prostanoid relaxant/inhibitory receptors (Ψ) using a highly selective agonist TR 4979. Br J Pharmacol 1986; 87: 45–56.PubMedGoogle Scholar
  18. 18.
    Gardiner PJ, Jones RL, McKenniff MG, Norman P, Rodger I. Prostanoid contractile receptors on guinea-pig and human airways. Br J Pharmacol 1987; 91: 363P.Google Scholar
  19. 19.
    Black JL, Armour CL, Vincenc KS, Johnson PRA. A comparison of the contractile activity of PGD2 and PGF2a on human isolated bronchus. Prostaglandins 1986; 32: 25–31.PubMedCrossRefGoogle Scholar
  20. 20.
    McKenniff MG, Rodger IW, Norman P, Gardiner PJ. Characterisation of receptors mediating the contractile effects of prostanoids in guinea-pig and human airways. Eur J Pharmacol 1988; 153: 149–159.PubMedCrossRefGoogle Scholar
  21. 21.
    Armour CL, Johnson PRA, Alfredson ML, Black JL. Characterisation of contractile prostanoid receptors on human airway smooth muscle. Eur J Pharmacol 1989; 165:215–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Coleman RA, Sheldrick RLG. Prostanoid induced contraction of human bronchial smooth muscle is mediated by TP-receptors. Br J Pharmacol 1989; 96: 688–92.PubMedGoogle Scholar
  23. 23.
    Featherstone RL, Robinson C, Holgate ST, Church MLK. Evidence for thromboxane receptor mediated contraction of guinea-pig and human airways in vitro by prostaglandin (PG) D2, 9α. 11β-PGF2 and PGF. Naunyn-Schmeideberg’s Arch Pharmacol 1990; 341: 439–443.Google Scholar
  24. 24.
    Nordel X, Labat C, Gardiner PJ, Brink C. Inhibitory effects of BAY u3405 on prostanoid-induced contractions in human isolated bronchial and pulmonary artery preparations. Br J Pharmacol 1991; 104: 591–95.Google Scholar
  25. 25.
    Beasley CRW, Robinson C, Featherstone RL, Varley JG, Hardy CC, Church MK et al. 9α, 11β-prostaglandin F2, a novel metabolite of prostaglandin D2 is a potent contractile agonist of human and guinea-pig airways. J Clin Invest 1987; 79: 978–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagai H, Kondo M, Koda A, Nakamura S, Hashimoto M, Yanagihara Y et al. Responses of isolated Japanese monkey tracheal muscle to allergic mediators. Int Arch Allergy Immunol 1992; 98: 70–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Halliman EA, Stapelfeld A, Savage MA, Reichman M. 8-chlorodibenz [β, F] [1,4] oxazepine — 10 [11H]-Carboxylic acid, 2-[3-[2-(Furanylmethyl) thio]-l-oxopropyl] hydrazide (SC-51322) a potent PGE2 antagonist and analgesic. Bioorg Med Chem Letts 1994; 4: 509–14.CrossRefGoogle Scholar
  28. 28.
    Saussy DL, Jr, Mais DE, Dube GP, Magee DE, Brune KA, Kurtz WL et al. Characterisation of a thromboxane A2/prostaglandin H2 receptor in guinea-pig lung membrane using a radioiodonated thromboxane mimetic. Mol Pharmacol 1991; 39: 72–8.PubMedGoogle Scholar
  29. 29.
    Saussy DL Jr, Clark PD, Gunn DL, Mais DE, Froelich LL. Binding of a novel radiodonated thromboxane A2/prostagolandin H2 antagonist to guinea-pig lung membranes. Eicosanoids 1992; 5: 1–4.PubMedGoogle Scholar
  30. 30.
    Panettieri RA, Murray RK, DePalo LR, Yadvish PA, Kotlikoff MI. A human airway smooth muscle cell line that retains physiological responsiveness. Am J Physiol 1989; 256: C329–C335.PubMedGoogle Scholar
  31. 31.
    Scornik FS, Toro L, U46619, a thromboxane A2 agonist inhibits Kca channel activity from pig coronary artery. Am J Physiol 1992; 262: C708–C713.PubMedGoogle Scholar
  32. 32.
    Foster RW, Okpalugo BI, Small RC. Antagonism of Ca2+ and other actions of verapamil on guinea-pig isolated trachealis. Br J Pharmacol 1984; 81: 499–507.PubMedGoogle Scholar
  33. 33.
    Creese BR, Denborough MA. The effects of prostaglandin E2 on contractility and cyclic AMP levels of guinea-pig tracheal smooth muscle. Clin Exp Pharmacol Physiol 1981; 8: 616–7.CrossRefGoogle Scholar
  34. 34.
    Jones TR, Denis D, Comptois P. Study of Ca2+-dependent contraction to arachidonic acid metabolites in airways smooth muscle. Prostaglandins 1984; 27: 939–59.PubMedCrossRefGoogle Scholar
  35. 35.
    Murad F, Kimura H. cyclic nucleotide levels in incubations of guinea-pig trachea. Biochem Biophys Acta 1974; 343: 275–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Stoner J, Mangeniello VC, Vaughan M. Guanosine cyclic 3’5’ monophosphate and guanylate cyclase activity in guinea-pig lung: Effects of acetylcholine and cholinesterase inhibitors. Mol Pharmacol 1974; 10: 155–161.PubMedGoogle Scholar
  37. 37.
    Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S et al. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 1991; 349: 617–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Funk CD, Furci L, FitzGerald GA, Grygorczyk R, Rochette C, Bayne MA et al. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J Biol Chem 1993; 268: 26767–72.PubMedGoogle Scholar
  39. 39.
    Honda A, Sugimoto Y, Namba T, Watabe A, Irie A, Negishi M, Narumiya S et al. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype. J Biol Chem 1993; 268: 7759–62.PubMedGoogle Scholar
  40. 40.
    Kunapuli SP, Fen Mao G, Bastepe M, Liu-Chen LY, Li S, Cheung PP et al. Cloning and expression of a prostaglandin E receptor EP3 subtype from human erythroleukoaemia cells. Biochem J 1994; 298: 263–7.PubMedGoogle Scholar
  41. 41.
    Sugimoto Y, Hasumoto K, Namba T, Irie A, Katsuyama M, Negishi M et al. Cloning and expression of a cDNA for mouse prostaglandin F receptor. J Biol chem 1994; 269: 1356–60.PubMedGoogle Scholar
  42. 42.
    Cuthbert MF. Effect on airway resistance of prostaglandin E1 given by aerosol to healthy and asthmatic volunteers. Br Med J 1969; 4: 723–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith AP, Cuthbert MF. Antagonistic actions of aerosols of prostaglandins F and E2 on bronchial muscle tone in man. Br Med J 1972; 3: 212–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Mathe AA, Hedqvist P, Holmgren A, Svenborg N. Bronchial hyperreactivity to prostglandin F and histamine in patients with asthma. Br Med J 1973; 1: 193–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Kawakama Y, Uchiyama K, Irie T, Murao M. Evaluation of aerosols of prostaglandin E1 and E2 as bronchodilators. Eur J Clin Pharmacol 1973; 6: 127–32.CrossRefGoogle Scholar
  46. 46.
    Smith AP. A comparison of the effects of prostaglandin E2 and salbutamol by intravenous infusion on the airways obstruction of patients with asthma. Br J Clin Pharmacol 1974; 1: 399–404.PubMedGoogle Scholar
  47. 47.
    Smith AP, Cuthbert MNF, Dunlop LS. Effects of inhaled prostaglandins E1, E2 and F on the airways resistance of healthy and asthmatic man. Clin Sci Molec Med 1975; 48: 421–30.Google Scholar
  48. 48.
    Pesagiklian M, Bianco S, Allergra L. Clinical, functional and pathogenetic aspects of bronchial reactivity to prostaglandins F, E1 and E2. In: Samuelsson B, Paoletti R, editors. Advances in Prostaglandin and Thromboxane Research. New York: Raven Press, 1976; 1: 461–75.Google Scholar
  49. 49.
    Seth RV, Clarke VS, Lewis RA, Tattersfield A. E. Effect of propranolol on the airway response to prostaglandin E2 in normal man. Br J Clin Pharmacol 1981; 12: 731–5.PubMedGoogle Scholar
  50. 50.
    Walters EH, Bevan M, Davies BH. Interactions between response to inhaled prostaglandin E2 and chronic beta adrenergic agonist treatment. Thorax 1982; 37: 430–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Mathe AA, Hedqvist P. Effect of prostaglandins F on airways conductance in healthy and asthmatic patients. Am Rev Resp Dis 1975; 111: 313–20.PubMedGoogle Scholar
  52. 52.
    Walters EH, Davies BH. Dual effect of prostaglandin E2 on normal airways smooth muscle in vivo. Thorax 1982; 37: 918–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Pavord ID, Wong CS, Williams J, Tattersfiled AE. Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Resp Dis 1993; 148: 87–90.PubMedGoogle Scholar
  54. 54.
    Bianco S, Robuschi M, Ceserani R, Gandolf, C. Effects of prostacyclin on a specifically and specifically induced bronchoconstriction in asthmatic patients. Eur J Resp Dis-Suppl. 1980; 106: 81–7.Google Scholar
  55. 55.
    Szciezeklik A, Gryglewski RJ, Nizankowska E, Musial J. Pulmonary and anti-platelet effects of intravenous and inhaled prostacyclin in man. Prostaglandin 1978; 16: 651–60.CrossRefGoogle Scholar
  56. 56.
    Jones GL, Sarvea HG, Watson RM, O’Byrne PM. Effect of an inhaled thromboxane mimetic (U46619) on airway function in human subjects. Am Rev Respir Dis 1992; 145: 1270–4.PubMedGoogle Scholar
  57. 57.
    Hardy CC, Robinson C, Tattersfield AE, Holgate ST. The bronchoconstrictor effect of inahaled prostaglandin D2 in normal and asthmatic man. New Eng J Med 1984; 311: 209–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Beasley R, Varley J, Robinson C, Holgate ST. Cholinergic-mediated bronchoconstriction induced by prostaglandin D2 its initial metabolite 9α, 11β-PGF2, and PGF in asthma. Am Rev Respir Dis 1987; 136: 1140–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Nall K, Dean N, Blecker E. Effect of a new thromboxane receptor antagonist and bronchial challenge with prostaglandin D2, and ragweed allergen. Eur Respir J 1992; 5: 2855.Google Scholar
  60. 60.
    Johnston SL, Bardin PG, Harrison J, Ritter W, Joubert JR, Holgate ST. The effects of an oral thromboxane TP receptor antagonist BAY u3405, on prostaglandin D2-and histamine-induced bronchoconstriction in asthma, and relationship to plasma drug concentrations. Br J Clin Pharmacol 1992; 34: 402–408.PubMedGoogle Scholar
  61. 61.
    Beasley RCW, Featherstone RL, Church MK, Rafferty P, Varley JG, Harris A et al. Effect of a thromboxane receptor antagonist on PGD2-and allergen-induced bronchoconstriction. J Appl Physiol 1989; 66: 1685–93.PubMedGoogle Scholar
  62. 62.
    Finnerty JP, Twentyman OP, Harris A, Palmer JBD, Holgate ST. Effect of GR 32191, a potent thromboxane receptor antagonist, an exercise-induced bronchoconstriction in asthma. Thorax 1991; 46: 190–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Coleman RA. GR 32191 and the role of thromboxane A2 in asthma-preclinical and clinical findings. In: Anderson GP, Chapman ID, Morley J, editors. New Drugs for Asthma Therapy. Agents and Actions Supplements, volume 34. Basel: Birkhäuser, 1991; 211–20.Google Scholar
  64. 64.
    Hui KP, Taylor IK, Taylor GW, Rubin P, Kesterson J, Barnes NC et al. Effect of a 5-lipoxygenase inhibitor on leukotriene generation and airway responses after allergen challenge in asthmatic patients. Thorax 1991; 46: 184–189.PubMedCrossRefGoogle Scholar
  65. 65.
    Israel E, Rubin P, Kemp JP, Grossman J, Pierson W, Siegel SC, Tinkelman D, Murray JJ, Busse W, Segal AT et al. The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Int Med 1993; 119: 1059–66.PubMedGoogle Scholar
  66. 66.
    Fairfax AJ, Hanson JM, Morley J. The late reaction following bronchial provocation with house dust mite allergen is dependent on arachidonic acid metabolism. Clin Exp Immunol 1983; 52: 393–98.PubMedGoogle Scholar
  67. 67.
    Shephard EG, Malan L, McFarlane CM, Morton W, Joubert JR. Lung function and plasma levels of thromboxane B2, 6-keto prostaglandin F, and β thromoglobulin in antigen-induced asthma before and after imdomethacin pretreatment. Br J Clin Pharmacol 1985; 19: 459–70.PubMedGoogle Scholar
  68. 68.
    Curzen N, Rafferty P, Holgate ST. Effects of a cyclooxygenase inhibitor flurbiprofen and an H1 histamine receptor antagonist terfenadine alone and in combination on allergen-induced immediate bronchoconstriction in man. Thorax 1987; 42: 946–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Kirby JG, Hargreave FE, Cockroft JW, O’Byrne PM. Effect of indomethacin on allergen induced asthmatic responses. J Appl Physiol 1989; 66: 578–83.PubMedGoogle Scholar
  70. 70.
    Smith AP. Effect of indomethacin in asthma: evidence against the role of prostaglandins in asthma. Br J Clin Pharmacol 1975; 2: 307–9.PubMedGoogle Scholar
  71. 71.
    Fish JE, Ankin MG, Adkinson F, Peterman VI. Indomethacin modification of immediate-type immunogic airway responses in allergic asthmatic and non asthmatic subjects. Am Rev Resp Dis 1981; 123: 609–14.PubMedGoogle Scholar
  72. 72.
    O’Bryne PM, Jones GL. The effect of indomethacin on exercise-induced bronchoconstriction and refractoriness after exercise. Am Rev Resp Dis 1986; 134: 69–72.Google Scholar
  73. 73.
    Fujimura M, Sasaki F, Nakatsumi Y, Takahashi Y, Hifumi S, Taga K et al. Effects of a thromboxane synthetase inhibitor (OKY-046) and a lipoxygenäse inhibitor (AA-861) on bronchial responsiveness to acetylcholine in asthmatic subjects. Thorax 1986; 41: 955–59.PubMedCrossRefGoogle Scholar
  74. 74.
    Iwamato I, Ra C, Suto T, Tomioka H, Yoshida S. Thromboxane A2 production in allergen-induced immediate and late asthmatic responses. J Asthma 1988; 25: 119–24.Google Scholar
  75. 75.
    Black PN, Salmon BT, Ewan P, Fuller RW. The effect of CGS 12970 a thromboxane synthetase inhibitor on the response to inhaled allergen. Am Rev Resp Dis 1989; 139: A93.Google Scholar
  76. 76.
    Manning PJ, Stevens WH, Cockroft DW, O’Byrne PM. The role of thromboxane in allergen-induced asthmatic responses. Eur Resp J 1991; 4: 667–72.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Phillip J. Gardiner
    • 1
  1. 1.Research Department, Pharmaceutical DivisionBayer plcStoke PogesUK

Personalised recommendations