Advertisement

5-Hydroxytryptamine

  • Maria G. Belvisi
  • Jonathan K. Ward
  • Alyson J. Fox
Chapter
Part of the Respiratory Pharmacology and Pharmacotherapy book series (RPP)

Abstract

Approximately 100 years ago a substance was found in serum that evoked powerful contractile responses in the smooth muscle of various organs. However, it was only in the 1940s that scientists succeeded in isolating this serum-derived vasoconstrictor factor which was released from platelets during the clotting of blood. In 1948 serotonin was isolated from serum and identified chemically as 5-hydroxytryptamine (5-HT) [1]. Independently, investigators in Italy were characterising a substance found in high concentrations in chromaffin cells of the intestinal mucosa. This material also seemed to contract smooth muscle especially that of the gastrointestinal tract and this substance was termed enteramine [2]. Finally, it was suggested and confirmed that enteramine and 5-HT were in fact the same substance [3].

Keywords

Airway Smooth Muscle Neuroepithelial Body Airway Smooth Muscle Tone Human Bronchial Smooth Muscle Airway Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapport MM, Green AA, Page IH. Serum vasoconstrictor (serotinin). IV. Isolation and characterisation. J Biol Chem 1948; 176: 1243–51.PubMedGoogle Scholar
  2. 2.
    Erspamer V 5-Hydroxytryptamine. In: von Euler US, Heller, H, editors. Comparative Endocrinology, 1963; 2: 159–81.Google Scholar
  3. 3.
    Erspamer V. Occurence of indolalkylamines in nature. In: Erspamer V, editor. Handbook of Experimental Pharmacology, vol 19, 5-Hydroxytryptamine and related indolamines. New York: Springer-Verlag, 1966; 132–81.Google Scholar
  4. 4.
    Twarog BM, Page IH. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 1953; 175: 157–61.PubMedGoogle Scholar
  5. 5.
    Falk B, Hillarp NA, Thieme S, Thorp A. Fluorescense of catecholamines and related compounds with formaldehyde. J Histochem Cytochem 1962; 10: 348–54.CrossRefGoogle Scholar
  6. 6.
    Dahlstrom A, Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system I. Demonstration of monoamines in the cell bodies of the brainstem neurons. Acta Physiol Scand 1964; 62: 232: 1–55.Google Scholar
  7. 7.
    Consolazione A, Cuello AC. CNS serotonin pathways. In: Biology of serotonergic transmission, ed. Osborne NN, 1982; 29-61.Google Scholar
  8. 8.
    Tork I. Anatomy of the serotonergic system. In: Whitaker-Azmitia PM, Peroutka SJ, editors. The Neuropharmacology of Serotonin. New York: The New York Academy of Science, 1990; 9–35.Google Scholar
  9. 9.
    Furness JB, Costa M. Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: Their projections in the guinea-pig small intestine. Neuroscience 1982; 7: 341–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Gershon MD, Tamir H. Release of endogenous 5-hydroxytryptamine from resting and stimulated enteric neurons. Neuroscience 1981; 6: 2277–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Jaim-Etcheverry G, Zieher LM. Stimulation-depletion of serotonin and noradrenaline from vesicles of sympathetic nerves in the pineal gland of the rat. Cell Tissue Res 1980; 207: 13–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Owman CH, Chang JY, Hardebo JE, Steinbusch HWM. 5-Hydroxytryptamine in cerebrovascular sympathetic nerves and its effects on brain vessels. In: Paoletti R, Vanhoutte PM, Brunello N, Maggi FM, editors. Serotonin. From Cell Biology to Pharmacology and Therapeutic. Dordrecht: Kluwer Academic Publishers, 1990; 105–16.Google Scholar
  13. 13.
    Verbeuren TJ. Synthesis, storage, release and metabolism of 5-hydroxytryptamine in peripheral tissues. In: Fozard JR, editor. The peripheral actions of 5-hydroxytryptamine. Oxford: Oxford University Press 1989; 1–25.Google Scholar
  14. 14.
    Campbell JN, Raja SN, Cohen RH, Manning DC, Khan AA, Meyer RA. Peripheral neural mechanisms of nociception. In: Wall PD, Melzack R, editors. Textbook of Pain. Edinburgh: Churchill Livingston. 1989; 22–45.Google Scholar
  15. 15.
    Kaufman RM, Airo R, Pollack S, Crosby WH. Circulating megakaryocytes and platelet release in the lung. Blood 1965; 26: 720–31.PubMedGoogle Scholar
  16. 16.
    Lauweryns JM, Peuskens JC. Argyrophil (kinin and amine producing?) cells in human infant airway epithelium. Life Sci 1969; 8: 577–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Lauweryns JM, Cokelaere M & Theunynck P. Serotonin producing neuroepithelial bodies in rabbit respiratory mucosa. Science 1973; 180: 410–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Salvi E, Renda T. An immunohistochemical study on neurons and paraneurons of the pre-and post-natal chicken lung. Arch Hist Cytol 1992; 55: 125–35.CrossRefGoogle Scholar
  19. 19.
    Balaguer L, Romano J, Ruiz-Pesini P. Serotonin immunoreactivity in the autonomic intrapulmonary ganglia of the fetal sheep. Neurosci Letts 1991; 133: 151–3.CrossRefGoogle Scholar
  20. 20.
    Cho, T, Chan W, Cutz E. Distribution and frequency of neuroepithelial bodies in post-natal rabbit lung: quantitative study with monoclonal antibody against serotonin. Cell Tissue Res 1989; 255: 353–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Watanabe H. Pathological studies of neuroendocrine cells in human embryonic and fetal lung. Light microscopical, immunohistochemical and electron microscopical approaches. Acta Pathologica Japonica 1988; 38: 59–74.PubMedGoogle Scholar
  22. 22.
    Lauweryns JM, De Bock V, Verhofstad AAJ, Steinbusch HWM. Immunohistochemical localisation of serotonin in intrapulmonary neuro-epithelial cell bodies. Cell Tissue Res 1982; 226: 215–23.PubMedGoogle Scholar
  23. 23.
    Johnson DE, Lock JE, Elde RP. Pulmonary neuroendocrine cells in hyaline membrane disease and bronchopulmonary dysplasia. Ped Res 1982; 16: 446–54.CrossRefGoogle Scholar
  24. 24.
    Johnson DE, Wobken JD, Landrum BG. Changes in bombesin, calcitonin, and serotonin immunoreactive pulmonary neuroendocrine cells in cystic fibrosis and after prolonged mechanical ventilatoin. Am Rev Respir Dis 1988; 137: 123–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Lauweryns JM, Cokelaere M. Intrapulmonary neuroepithelial bodies: hypoxia-sensitive neuro(chemo) receptors. Experimentia 1973; 29: 1383–6.Google Scholar
  26. 26.
    Kitamura Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Ann Rev Immunol 1989; 7: 59–76.CrossRefGoogle Scholar
  27. 27.
    Buckner CK, Dea D, Liberati N, Krell RD. A pharmacologic examination of receptors mediating serotonin-induced bronchoconstriction in the anaesthetised guinea-pig. J Pharm Exp Ther 1991; 257: 26–34.Google Scholar
  28. 28.
    Ward JK, Fox AJ, Barnes PJ, Belvisi MG. Activation of an atypical 5-HT receptor inhibits excitatory non-adrenergic non-cholinergic bronchonconstriction in guinea-pig airways in vitro. Br J Pharmacol 1994; 111: 1095–102.PubMedGoogle Scholar
  29. 29.
    Hartig PR, Branchek TA, Weinshank RL. A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci 1992; 13: 152–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Frazer A, Maayani S, Wolfe B. Subtypes of receptors for serotonin. Ann Rev Pharmacol Toxicol 1990; 30: 307–48.CrossRefGoogle Scholar
  31. 31.
    Humphrey PPA, Hartig P, Hoyer D. A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 1993; 14: 233–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Gaddum JH, Picarelli ZP. Two kinds of tryptamine receptors. Br J Pharmacol 1957; 12: 323–28.Google Scholar
  33. 33.
    Peroutka SJ, Snyder SH. Multiple serotonin receptors: differntial binding of [3H] 5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spioperidol. Mol Pharmacol 1979; 16: 220–6.Google Scholar
  34. 34.
    Bradley PB, Engel G, Fenuik W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 1986; 25: 563–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Bockaert J, Fozard JR, Dumuis A, Clarke DE. The 5-HT4 receptor: a place in the sun. Trends Pharmacol Sci 1992; 13: 141–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Leonhardt S, Herrick-Davis K, Titeler M. Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J Neurochem 1989; 53: 465–71.PubMedCrossRefGoogle Scholar
  37. 37.
    McAllister G, Charlesworth A, Snodin C, Beer MS, Noble AJ, Middlemiss DN, Iversen LL, Whiting P. Molecular cloning of a serotonin receptor from human brain (5-HT1E): a fifth 5-HT,-like subtype. Proc Natl Acad Sci 1992; 89: 5517–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Zgombick JM, Schechter LE, Macchi M, Hartig PR, Branchek TA, Weinshank RL. Human gene S31 encodes the pharmacologically defined serotonin 5-hydroxytryptamine1E receptor. Molecular Pharmacol 1992; 42: 180–5.Google Scholar
  39. 39.
    Adham N, Kao H-T, Schechter LE, Bard J, Olsen M, Urquart D, Durkin M, Hartig PR, Weinshank RL, Branchek TA. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT, receptor coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci 1993; 90: 408–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoyer D, Boddeke H, Schoeffter P. Second messengers in the definition of 5-HT receptors. In: Fozard JR, Saxena PR, editors. Serotonin: Molecular Biology, Receptors and Functional Effects. Basel: Birkhäuser, 1991; 117–32.CrossRefGoogle Scholar
  41. 41.
    Fargin A, Raymond JR, Regan JW, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 1988; 335: 358–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R. Mouse 5HT1B serotonin receptor: Cloning, functional expression, and localisation in motor control centers. Proc Natl Acad Sci 1992; 89: 3020–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA, Hartig PR. Human serotonin1D receptor is encoded by a subfamily of two distinct genes: 5-HT1Dalpha and 5-HT1Dbeta. Proc Natl Acad Sci 1992; 89: 3630–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Pazos A, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptor sites. Brain Res 1985; 346: 205–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Fozard JR, Kilbinger H. 8-OH-DPAT inhibits transmitter release from guinea-pig enteric neurones by activating 5-HT1A receptors. Br J Pharmacol 1985; 86: 601P.Google Scholar
  46. 46.
    Peroutka SJ, Huang S, Allen GS. Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther 1986; 237: 901–6.PubMedGoogle Scholar
  47. 47.
    Hoyer D, Engel G, Kalkman HO. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]-OH-DPAT, (—)[125I]iodocyanopindolol, [3H]mesulegine, and [3H]ketanserin. Eur J Pharmacol 1985; 118: 13–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Heuring RE, Schlegel JR, Peroutka SJ. Species in 5-HT1B and 5-HT1C binding sites denned by RU 24969 competition studies. Eur J Pharmacol 1986; 122: 279–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Engel G, Gothert M, Hoyer D, Schlicker E, Hillenbrand K. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 1986; 332: 1–7.CrossRefGoogle Scholar
  50. 50.
    Molderings GJ, Fink K, Schlicker E, Gothert M. Inhibition of noradrenaline release via presynaptic 5-HT1B receptors of the rat vena cava. Naunyn-Schmiedeberg’s Arch Pharmacol 1987; 336: 245–50.Google Scholar
  51. 51.
    Hoyer D. 5-Hydroxytryptamine receptors and effector coupling mechanisms in peripheral tissues. In: Fozard JR, editor. The Peripheral Actions of 5-Hydroxytryptamine. Oxford: Oxford Medical Publications, 1989; 72–99.Google Scholar
  52. 52.
    Waeber C, Schoeffter P, Palacios P, Hoyer D (1988). Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig and calf brain membranes. Naunyn-Schmiedeberg’s Arch Pharmacol 1988; 337: 595–601.Google Scholar
  53. 53.
    Hoyer D, Middlemiss DN. The pharmacology of the terminal autoreceptors in mammalian brain: evidence for species differences. Trends Pharmacol Sci 1989; 10: 130–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Humphrey PPA, Feniuk W, Perren MJ, Connor HE, Oxford AW, Coates IH, Butina D. GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol 1988; 94: 1123–32.PubMedGoogle Scholar
  55. 55.
    Parson AA, Whalley ET, Feniuk W, Connor HE, Humphrey PPA. 5-HT1-like receptors mediate 5-hydroxytryptamine-induced contraction of human basilar artery. Br J Pharmacol 1989; 96, 434–49.Google Scholar
  56. 56.
    Humphrey PPA, Feniuk W. Mode of action of the anti-migraine drug sumatriptan. Trends Pharmacol Sci 1991; 12: 444–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Affolter H, Erne P, Burgisser E, Pletscher A. Ca2+ as a messenger of 5-HT2 receptor stimulation in human blood platelets. Naunyn-Schmiedeberg’s Arch Pharmacol 1984; 325: 337–42.CrossRefGoogle Scholar
  58. 58.
    Eglen RM, Alvarez R, Johnson LG, Lewig E, Wong EHF. The action of SDZ 205, 557 at 5-hydroxytryptamine (5HT3 and 5HT4) receptors. Br J Pharmacol 1993; 108: 376–82.PubMedGoogle Scholar
  59. 59.
    Cohen ML, Schenck KW, Colbert W, Wittenauer L. Role of 5-hydroxytryptamine2 receptors in serotonin-induced contractions of nonvascular smooth muscle. J Pharmacol Exp Ther 1985; 232: 770–4.PubMedGoogle Scholar
  60. 60.
    Feniuk W, Humphrey PPA, Perren MJ, Watts AD. A comparison of 5-hydroxytryptamine receptors mediating contraction in rabbit isolated aorta and dog saphenous vein. Evidence for different receptor types obtained by the use of selective agonists and antagonists. Br J Pharmacol 1985; 86: 697–704.PubMedGoogle Scholar
  61. 61.
    Hoyer D. Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol Sci 1988; 9: 89–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Roth BL, Makaki T, Chuang D, Costa E. 5-hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J Pharmacol Exp Ther 1986; 238: 480–5.PubMedGoogle Scholar
  63. 63.
    Conn PJ, Sanders-Bush E, Hoffman BJ, Hartig PR. A unique serotinin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci 1986; 83: 4086–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Julius D, MacDermott AB, Axel R, Hessel JM. Molecular characterisation of a functional cDNA encoding the serotinin 1C receptor. Science 1988; 241: 558–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Julius D, Huang KN, Livelli T, Axel R, Jessel T. The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotinin receptors. Proc Natl Acad Sci 1990; 87: 928–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Fozard JR. Neuronal 5-HT receptors in the periphery. Neuropharmacology 1984; 23: 1473–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Fozard JR. MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 1984; 326: 36–44.CrossRefGoogle Scholar
  68. 68.
    Richardson BP, Engel G, Donatsch P, Stadler PA. Identification of serotonin receptor subtypes and their specific blockade by a new class of drugs. Nature 1985; 316: 126–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Ireland SJ, Tyers MB. Pharmacological characterisation of 5-hydroxytryptamine-induced depolarisation of the rat isolated vagus nerve. Br J Pharmacol 1987; 90: 229–38.PubMedGoogle Scholar
  70. 70.
    Round A, Wallis DI. The depolarising action of 5-hydroxytryptamine on rabbit vagal afferent and sympathetic neurones in vitro and its selective blockade by ICS 205-930. Br J Pharmacol 1986; 88: 485–94.PubMedGoogle Scholar
  71. 71.
    Fox AJ, Morton IKM. An examination of the 5-HT3 receptor mediating contraction and evoked [3H]-ACh release in the guinea-pig ileum. Br J Pharmacol 1990; 101: 553–8.PubMedGoogle Scholar
  72. 72.
    Butler A, Elswood CJ, Burridge J, Ireland SJ, Bunce KT, Kilpatrick GJ, Tyres MB. The pharmacological characteristics of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br J Pharmacol 1990; 101: 591–8.PubMedGoogle Scholar
  73. 73.
    Hagan RM, Jones BJ, Jordan CC, Tyers MB. Effect of 5-HT3 receptor antagonists on responses to selective activation of mesolimbic dopaminergic pathways in the rat. Br J Pharmacol 1990; 99: 227–32.PubMedGoogle Scholar
  74. 74.
    Higgins GA, Kilpatrick GJ, Bunce KT, Jones BJ, Tyers MB. 5-HT3 receptor antagonists injected into the area postrema inhibit cisplatin-induced emesis in the ferret. Br J Pharmacol 1989; 97: 247–55.PubMedGoogle Scholar
  75. 75.
    Derkach V, Suprenant A, North RA. 5-HT3 receptors are membrane ion channels. Nature 1989; 339: 706–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary structure and functional expression of the 5-HT3 receptor, a serotoningated ion channel. Science 1991; 254: 432–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Grossman CJ, Kilpatrick GJ, Bruce KT. Development of a radioligand binding assay for the 5-HT4 receptor: use of a novel antagonist. Br J Pharmacol 1993; 109: 618–24.PubMedGoogle Scholar
  78. 78.
    Dumuis A, Sebben M, Bockaert J. The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurones. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 340: 403–10.CrossRefGoogle Scholar
  79. 79.
    Bockaert J, Sebben M, Dumuis A. Pharmacological characterisation of 5-hydroxy-tryptamine-4 (5-HT4) receptors positively coupled to adenylate cyclase in adult guinea-pig hippocampal membranes. Effect of substituted benzamide derivatives. Mol Pharmacol 1990; 37: 408–11.PubMedGoogle Scholar
  80. 80.
    Craig DA, Clarke DE. Pharmacological characterisation of a neuronal receptor for 5-hydroxytryptamine in guinea-pig ileum with properties similar to the 5-hydroxy-tryptamine-4 receptor. J Pharmacol Exp Ther 1990; 252: 1378–86.PubMedGoogle Scholar
  81. 81.
    Baxter GS, Craig DA, Clarke DE. 5-hydroxytryptamine4 receptors mediate relaxation of the rat oesophageal tunica muscularis mucosae. Naunyn-Schmiedeberg’s Arch Pharmacol 1991; 343: 439–46.Google Scholar
  82. 82.
    Elswood CJ, Bunce KT, Humphrey PPA. Identification of 5-HT4 receptors in guinea-pig ascending colon. Eur J Phrmacol 1991; 196: 149–55.CrossRefGoogle Scholar
  83. 83.
    Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ. A 5-hydroxytryptamine receptor in human atrium. Br J Pharmacol 1990; 100: 879–85.PubMedGoogle Scholar
  84. 84.
    Buccheit KH, Gamse R, Pfannkuche HJ. SDZ 205-557, a selective, surmountable antagonist for 5-HT4 receptors in the isolated guinea-pig ileum. Naunyn-Schmiedeberg’s Arch Pharmacol 1992; 345: 387–93.Google Scholar
  85. 85.
    Schiavone A, Giraldo E, Giudici L, Turconi M, Sagrada A. DAU 6285: a novel antagonist at the putative 5-HT4 receptor. Life Sci 1992; 51: 583–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Gale JD, Grossman CJ, Whitehead JWF, Oxford AW, Bunce KT, Humphrey PPA. GR113808: a novel, selective antagonist with high affinity at the 5-HT4 receptor. Br J Pharmacol 1994; 111: 332–8.PubMedGoogle Scholar
  87. 87.
    Plassat JL, Boschert U, Amlaiky N, Hen R. The mouse 5-HT5 receptor reveals a remarkable heterogeneity within the 5-HT1D receptor family. EMBO J 1992; 11: 4779–86.PubMedGoogle Scholar
  88. 88.
    Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 1993; 268: 18200–4.PubMedGoogle Scholar
  89. 89.
    Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC. Molecular cloning, characterisation and localisation of a high affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci 1993; 90: 8547–51.PubMedCrossRefGoogle Scholar
  90. 90.
    Brocklehurst W. The action of 5-hydroxytryptamine on smooth muscle. In: 5-hydroxy-tryptamine (Lewis GP, editor). London: Pergamon Press, 1958; 172–8.Google Scholar
  91. 91.
    Offermeier J, Ariens EJ. Serotonin I. Receptors involved in its action. Arch Int Pharmacodyn Ther 1966; 164: 192–215.PubMedGoogle Scholar
  92. 92.
    Eyre P. The pharmacology of sheep tracheobronchial muscle: a relaxant effect of histamine on the isolated bronchi. Br J Pharmacol 1969; 36: 409–17.Google Scholar
  93. 93.
    Chand N, Eyre P. Spasmolytic actions of histamine in airway smooth muscle of horse. Agents Actions 1978; 8: 191–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Islam MS, Melville GN, Ulmer WT. Role of atropine in antagonising the effect of 5-hydroxytryptamine (5-HT) on bronchial and pulmonary vascular systems. Respiration 1974; 31: 47–59.PubMedCrossRefGoogle Scholar
  95. 95.
    Hahn HL, Wilson AG, Graf PD, Fischer SP, Nadel JA. Interactions between serotonin and efferent vagus nerves in dog lungs. J Appl Physiol 1978; 44: 144–9.PubMedGoogle Scholar
  96. 96.
    Parratt JR, Coker SJ, Hughes B, Macdonald A, Ledingham IMcA, Rodger IW, Zeitlin IJ. The possible role of prostaglandins and thromboxanes in the pulmonary consequences of experimental endotoxin shock and clinical sepsis. In: McConn R, editor. The role of chemical mediators in the pathophysiology of acute illness and injury. New York: Raven, 1982; 195–218.Google Scholar
  97. 97.
    Macquin-Mavier I, Jarreau PH, Istin N, Harf A. 5-Hydroxytryptamine-induced bronchoconstriction in the guinea-pig: effect of 5-HT2 receptor activation on acetylcholine release. Br J Pharmacol 1991; 102: 1003–7.PubMedGoogle Scholar
  98. 98.
    Baumgartner RA, Wills-Karp M, Kaufman MJ, Munakata M, Hirshman C. Serotonin induces constriction and relaxation of the guinea-pig airway. J Pharmacol Exp Ther 1990; 255: 165–73.PubMedGoogle Scholar
  99. 99.
    Bhattacharya BK. A pharmacological study on the effect of 5-hydroxytryptamine and its antagonists on the bronchial musculature. Arch Int Pharmacodyn Ther 1955; 103: 357–69.PubMedGoogle Scholar
  100. 100.
    Lemione H, Kaumann AJ. Allosteric properties of 5-HT2 receptors in tracheal smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 1986; 333: 91–7.CrossRefGoogle Scholar
  101. 101.
    Kameda H, Minami M, Yoshioka M, Saito H. The effects of ICS205-930, a novel 5-HT3 antagonist, on the responses to 5-HT in the guinea-pig ileum and trachea. Biogenic Amines 1988; 5: 465–74.Google Scholar
  102. 102.
    Selig WM, Bloomquist MA, Cohen ML, Fleisch JM. Serotonin-induced pulmonary responses in the perfused guinea-pig lung: evidence for 5-HT2 receptor mediated pulmonary vascular and airway smooth muscle contraction. Pulm Pharmacol 1992; 1: 93–9.CrossRefGoogle Scholar
  103. 103.
    Sanders-Bush E, Tsutsumi M, Burris KD. Serotonin receptors and phosphatidylinositol turnover. Ann NY Acad Sci 1990; 600: 224–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Roth BL, Nakaki T, Chuang DM, Costa E. Aortic recognition sites for serotonin (5-HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology 1984; 23: 1223–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Cohen ML, Wittenauer LA. Serotonin receptor activation of phosphoinosotide turnover in uterine, fundal, vascular, and tracheal smooth muscle. J Cardiovasc Pharmacol 1987; 10: 176–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Watts SW, Cohen ML. Characterization of the contractile serotonergic receptor in guinea-pig trachea with agonists and antagonists. J Pharmacol Exp Ther 1992; 260: 1101–6.PubMedGoogle Scholar
  107. 107.
    Pritchett DB, Bach AWJ, Wozny M, Talebo O, Togo RD, Shih JC, Seeburg PH. Structure and functional expression of cloned rat serotonin 5-HT2 receptor. EMBO J 1988; 7: 4135–40.PubMedGoogle Scholar
  108. 108.
    Watts SW, Cohen ML. Further evidence that the guinea-pig tracheal contractile serotonergic receptor in a 5-hydroxytryptamine2 receptor: use of 5-methyltryptamine and dipropyl-5-carboxamidotryptamine. J Pharmacol Exp Ther 1993; 264: 271–5.PubMedGoogle Scholar
  109. 109.
    Mathe AA, Atrom A, Persson NA. Some bronchoconstricting and bronchodilating responses of human isolated bronchi. Evidence for the existence of alpha-adrenoreceptors. J Pharm Pharmacol 1971; 23: 905–10.PubMedCrossRefGoogle Scholar
  110. 110.
    Raffestin B, Cerrina J, Boulette C, Labat C, Benveniste J, Brink C. Response and sensitivity of isolated human pulmonary muscle preparations to pharmacological agents. J Pharmacol Exp Ther 1985; 233: 186–94.PubMedGoogle Scholar
  111. 111.
    Cushley MJ, Wee LH, Holgate ST. The effect of inhaled 5-hydroxytryptamine (5-HT, serotonin) on airway calibre in man. Br J Clin Pharmacol 1986; 22: 487–90.PubMedGoogle Scholar
  112. 112.
    Goldie RG, Paterson JW, Wale JL. Pharmacological responses of human and porcine lung parenchymal bronchus and pulmonary artery. Br J Pharmacol 1982; 36: 409–17.Google Scholar
  113. 113.
    Cerrina J, Boullet C, Labat C, Raffestin B, Benveniste J, Brink C. Pharmacology of isolated human bronchial smooth muscle. Fed Proc 1983; 42: 908.Google Scholar
  114. 114.
    Chand N, Deroth L, Eyre P. Relaxant response of goat trachea to 5-hydroxytryptamine mediated by D-tryptamine receptors. Br J Pharmacol 1979; 16: 331–6.Google Scholar
  115. 115.
    Bayol A, Benveniste J, Brink C, Cerrina J, Gateau O, Labat C, Raffestin B. Response and sensitivity of guinea-pig airway smooth muscle preparations to 5-hydroxytryptamine during ontogenesis. Br J Pharmacol 1985; 85: 569–74.PubMedGoogle Scholar
  116. 116.
    Roth BL, Chuang D. Multiple mechanisms of serotonergic signal transduction. Life Sci 1987; 41: 1051–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Gilbert MJ, Newberry NR. A 5-HT1-like receptor mediates a sympathetic ganglionic hyperpolarisation. Eur J Pharmacol 1987; 144: 385–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Barnes PH. Neural control of the airways in health and disease. Am Rev Respir Dis 1986; 134: 1289–314.PubMedGoogle Scholar
  119. 119.
    Barnes PJ, Baraniuk JM, Belvisi MG. Neuropeptides in the respiratory tract. Am Rev Respir Dis 1991; 144: 1187–98.PubMedCrossRefGoogle Scholar
  120. 120.
    Barnes PJ, Belvisi MG. Nitric oxide and lung disease. Thorax 1993; 48: 1034–43.PubMedCrossRefGoogle Scholar
  121. 121.
    Belvisi MG, Bai TR. Inhibitory NANC innervation: The role of nitric oxide. In: Raeburn D, Giembycz MA, editors. Airways Smooth Muscle: Structure, Innervation and Neurotransmission. Basel: Birkhäuser, 1994; 157–87.Google Scholar
  122. 122.
    Trendelenberg U. Modification of transmission through the superior cervical ganglion of the cat. J Physiol 1956; 132: 529–41.Google Scholar
  123. 123.
    Wallis DI, Woodward B. The facilitatory actions of 5-hydroxytryptamine and bradykinin in the superior cervical ganglion of the rabbit. Br J Pharmacol 1974; 51: 521–31.PubMedGoogle Scholar
  124. 124.
    Dixon M, Jackson DM, Richards IM. The effects of 5-hydroxytryptamine, histamine and acetylcholine on the reactivity of the lung of the anaesthetised dog. J Physiol 1980; 307: 85–96.PubMedGoogle Scholar
  125. 125.
    Sheller JR, Holtzman MJ, Skoogh B-E, Nadel JA. Interaction of serotonin with vagal-and ACh-induced bronchoconstriction in canine lungs. J Appl Physiol 1982; 52: 964–6.PubMedGoogle Scholar
  126. 126.
    Aas P. Serotonin induced release of acetylcholine from neurons in the bronchial smooth muscle of the rat. Acta Physiol Scand 1983; 117: 477–80.PubMedCrossRefGoogle Scholar
  127. 127.
    Wallis DI. Interaction of 5-hydroxytryptamine with autonomic and sensory neuones. In: Fozard JR, editor. The peripheral actions of 5-hydroxytryptamine. Oxford: Oxford University Press 1989, 220–46.Google Scholar
  128. 128.
    Szarek JL, Schmidt NL. Hydrogen peroxide-induced potentiation of contractile responses in isolated rat airways. Am J Physiol 1990; 258: L232–7.PubMedGoogle Scholar
  129. 129.
    Szarek JL, Zhang JZ, Gruetter CA. 5-HT2 receptors augment cholinergic nerve-mediated contraction of rat bronchi. Eur J Pharmacol 1993; 231: 339–46.PubMedCrossRefGoogle Scholar
  130. 130.
    Van Oosterhout AJM, Hofman G, Woutersen-Van Nijnanten FMA, Nijkamp FP. 5-HT1-like receptors mediate potentiation of cholinergic nerve-mediated contraction of isolated mouse trachea. Eur J Pharmacol 1991; 209: 237–44.PubMedCrossRefGoogle Scholar
  131. 131.
    Rizzo CA, Kreutner W, Chapman RW. 5-HT3 receptors agument neuronal, cholinergic contractions in guinea-pig trachea. Eur J Pharmacol 1993; 234: 109–12.PubMedCrossRefGoogle Scholar
  132. 132.
    Barnes PJ. Modulation of neurotransmission in airways. Physiol Rev 1992; 72: 699–729.PubMedGoogle Scholar
  133. 133.
    Blackman JG, McCaig DJ. Studies on the isolated innervated preparation of guinea-pig trachea. Br J Pharmacol 1983; 80: 703–10.PubMedGoogle Scholar
  134. 134.
    Potter PE, Meek JL, Neff NH. Acetylcholine and choline in neuronal tissue measured by HPLC with electochemical detection. J Neurochem 1983; 41: 188–94.PubMedCrossRefGoogle Scholar
  135. 135.
    Wessler I, Hellwig D, Racke K. Epithelium-derived inhibition of [3H] acetylcholine release from the isolated guinea-pig trachea. Naunyn-Schmiedeberg’s Arch Pharmacol 1990; 342: 387–93.Google Scholar
  136. 136.
    Kilbinger H, Wolf D. Effects of 5-HT4 receptor stimulation on basal and electrically evoked release of acetylcholine from guinea-pig myenteric plexus. Naunyn-Schmiedeberg’s Arch Pharmacol 1992; 345: 270–5.Google Scholar
  137. 137.
    Douglas WW, Ritchie JM. On excitation of nonmedullated afferent fibres in the aortic nerves by pharmacological agents. J Physiol 1957; 138: 31–43.PubMedGoogle Scholar
  138. 138.
    Higashi H, Nishi S. 5-hydroxytryptamine receptors of visceral primary afferent neurones on rabbit nodose ganglia. J Physiol 1982; 543-67.Google Scholar
  139. 139.
    Todorovic SM, Anderson EG. Pharmacological characterisation of 5-hydroxy-tryptamine2 and 5-hydroxytryptamine3 receptors in rat dorsal root ganglion cells. J Pharmacol Exp Ther 1990; 254: 109–15.PubMedGoogle Scholar
  140. 140.
    Hamon M, Gallissot MC, Menard F, Gozlan H, Bourgoin S, Verge D. 5-HT3 receptor binding sites are on capsaicin-sensitive fibres in the rat spinal cord. Eur J Pharmacol 1989; 164: 315–22.PubMedCrossRefGoogle Scholar
  141. 141.
    Davel G, Verge D, Basbaum A, Bourgoin S, Hamon M. Autoradiographic evidence of serotonin 1 binding sites on primary afferent fibres inthe dorsal horn of the rat spinal cord. Neurosci Lett 1987; 83: 71–6.CrossRefGoogle Scholar
  142. 142.
    Huang JC, Peroutka SJ. Identificaton of 5-hydroxytryptamine1 binding sites subtypes in rat spinal cord. Brain Res 1987; 436: 173–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Christian EP, Taylor GE, Weinreich D. Serotonin increases excitability of rabbit C-fibre neurons by two distinct mechanisms. J Appl Physiol 1990; 67: 584–91.Google Scholar
  144. 144.
    Tramontana M, Giuliani S, Del Bianco E, Lecci A, Maggi CA, Evangelista S, Geppeti P. Effects of capsaicin and 5-HT3 antagonists on 5-hydroxytryptamine-evoked release of calcitonin gene-related peptide in the guinea-pig heart. Br J Pharmacol 1993; 108: 431–5.PubMedGoogle Scholar
  145. 145.
    Buzzi MG, Moskowitz MA. The antimigraine drug, sumatriptan (GR 43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 1990; 99: 203–6.Google Scholar
  146. 146.
    Matsubara T, Moskowitz MA, Byun B. CP-93, 129, a potent and selective 5-HT1B receptor agonist blocks neurogenic plasma extravasation within rat but not guinea-pig dura mater. Br J Pharmacol 1991; 104: 3–4.PubMedGoogle Scholar
  147. 147.
    Fox AJ, Barnes PJ, Urban L, Dray A. An in vitro study of the properties of single vagal afferents innervating guinea-pig airways. J Physiol 1993; 469: 21–35.PubMedGoogle Scholar
  148. 148.
    Kamei J, Mori M, Ogawa M, Kasuya Y. Subsensitivity to the cough-depressant effects of opioid and nonopioid antitussives in morphine-dependent rats: relationship to central serotonin function. Pharmacol Biochem Behav 1989; 34: 595–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Kamei J, Mori M, Igarashi H, Kasuya Y. Effects of 8-hydroxy-2-(di-n-propyl-amino)tetralin, a selective agonist of 5-HT1A receptors, on the cough reflex in rats. Eur J Pharmacol 1991; 203: 253–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Stone RA, Worsdell Y-M, Fuller RW, Barnes PJ. Effects of 5-hydroxytryptamine and 5-hydroxytryptophan infusion on the human cough reflex. J Appl Physiol 1993; 74: 396–401.PubMedGoogle Scholar
  151. 151.
    Stretton CD, Miura M, Belvisi MG, Barnes PJ. Calcium-activated potassium channels mediate prejunctional inhibition of peripheral sensory fibres. Proc Natl Acad Sci 192; 89: 1325-9.Google Scholar
  152. 152.
    Buckner CK, Liberati N, Dea D, Lengel D, Stinson-Fisher C, Campbell J, Miller S, Shenvi A, Krell RD. Differential blockade by tachykinin NK1 and NK2 receptor antagonists of bronchoconstriction induced by direct-acting agonists and the indirect-acting mimetics capsaicin, serotonin and 2-methyl-serotonin in the anesthetised guinea-pig. J Pharmacol Exp Ther 1993; 267: 1168–75.PubMedGoogle Scholar
  153. 153.
    Joos GF, Pauwels RA, Van der Straeten ME. the mechanism of tachykinin-induced bronchoconstriction in the rat. Am Rev Respir Dis 1988; 137: 1038–44.PubMedGoogle Scholar
  154. 154.
    Rueff A, Dray A. 5-Hydroxytryptamine-induced sensitization and activation of peripheral fibres in the neonatal rat are mediated via different 5-hydroxytryptamine-receptors. Neuroscience 1992; 4: 899–905.CrossRefGoogle Scholar
  155. 155.
    Thomas D, Stein M, Tanabe C, Rege V, Wessler S. Mechanism of bronchoconstriction produced by thromboemboli in dogs. Am J Physiol 1964; 206: 1207–12.PubMedGoogle Scholar
  156. 156.
    Tonnesen P. Bronchial challenge with serotonin in asthmatics. Allergy 1985; 40: 136–40.PubMedCrossRefGoogle Scholar
  157. 157.
    Panzani, R. 5-Hydroxytryptamine (serotonin) in human bronchial asthma. Ann Allergy 1962; 20: 721–32.Google Scholar
  158. 158.
    So SY, Lam NK, Kuens S. Selective 5-HT2 receptor blockade in exercise-induced asthma. Clin Allergy 1985; 15: 371–6.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Maria G. Belvisi
    • 1
  • Jonathan K. Ward
    • 1
  • Alyson J. Fox
    • 1
  1. 1.Department of Thoracic MedicineRoyal Brompton National Heart and Lung InstituteLondonUK

Personalised recommendations