Advertisement

Abstract

Adrenoceptors are ubiquitously expressed on the surface of the numerous cell types that comprise or move through the mammalian lung. These adrenoceptors may indirectly exert influences over airways smooth muscle by modulating processes such as neurotransmission, degranulation of metachromatic cells and regulating the microcirculation. This chapter, however, deals strictly with the nature of adrenoceptors and their functions when located on airways smooth muscle. Extraordinary advances have been made in understanding adrenergic mechanisms in recent years, particularly since the application of molecular biology techniques to the study of adrenoceptor structural biology. Adrenoceptors are consequently amongst the best understood of all receptor and signal transduction systems. Unfortunately, little of this information has been acquired directly from studies of airways smooth muscle: general principles will therefore be dealt with in each section before discussing the specific state of knowledge of these processes in airways smooth muscle. Several excellent reviews in this area have been published in recent years [1–5].

Keywords

Adenylyl Cyclase Airway Smooth Muscle Airway Smooth Muscle Cell BKca Channel Tracheal Smooth Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldie RG, Lulich KM, Paterson JW. Adrenoceptors in airway smooth muscle. Pharmacol Ther 1990; 48: 295–322.PubMedCrossRefGoogle Scholar
  2. 2.
    Nijkamp FP, Engels F, Henricks PAJ, Van Oosterhout AJM. Mechanisms of β-adrenergic receptor regulation in lungs and its implications for physiological responses. Physiol Rev 1992; 72: 323–67.PubMedGoogle Scholar
  3. 3.
    Lefkowitz RJ, Caron MG. Adrenergic receptors — models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 1988; 263: 4993–6.PubMedGoogle Scholar
  4. 4.
    Lefkowtiz RJ, Hausdorff WP, Caron MG. Role of phosphorylation in desensitization of the β-adrenoceptor. Trends Pharmacol Sci 1990; 11: 190–4.CrossRefGoogle Scholar
  5. 5.
    Lefkowitz RJ, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993; 14: 303–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Ephraim A. Ueber Endobronchale Therapie. Berlin Klinisch Wschr 1910; 47: 1317–20.Google Scholar
  7. 7.
    Konsett H. Neues zur Asthma Therapie. Klinische Wochenshrift 1940; 19: 1303–6.CrossRefGoogle Scholar
  8. 8.
    Ahlquist RP. A study of the adrenotrophic receptors. Am J Physiol 1948; 153: 586–600.PubMedGoogle Scholar
  9. 9.
    Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendellenberg U. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 1994; 46: 121–36.PubMedGoogle Scholar
  10. 10.
    Lands AM, Brown TG. A comparision of cardiac stimulating and bronchodilator actions of selected sympathomimetic amines. Proc Soc Exp Biol Med 1964; 116: 331–3.PubMedGoogle Scholar
  11. 11.
    Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG. Differentiation of receptor systems activated by sympathomimetic amines. Nature 1967; 214: 597–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Levy B. The beta-adrenoceptor blocking properties of the α-methyl analogues of propranolol and practolol in the anesthetized dog. Br J Pharmacol 1973; 49: 541–526.Google Scholar
  13. 13.
    O’Donnell SR, Wanstall JC. Potency and selectivity in vitro of compounds related to isoprenaline and orciprenaline on β-adrenoceptors in the guineapig. Br J Pharmacol 1974; 52: 407–17.PubMedGoogle Scholar
  14. 14.
    Challiss RAJ, Leighton V, Wilson A, Thurlby PL, Arch RS. An investigation of the beta-adrenoceptor that mediate metabolic responses to the novel agonist BRL 28410 in rat soleus muscle. Biochem Pharmacol 1988; 37: 947–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Emorine LJ, Marullo S, Briend-Sutren M-M. Molecular characterization of the human β3-adrenergic receptor. Science 1989; 245: 1118–1121.PubMedCrossRefGoogle Scholar
  16. 16.
    Webber SE, Stock MJ. Evidence for an atypical or beta 3-adrenoceptor in ferret tracheal epithelium. Br J Pharmacol 1992; 105: 857–862.PubMedGoogle Scholar
  17. 17.
    Tamaoki J, Yamauchi F, Chiyotani A, Yamawaki I, Takeuchi S, Konno K. Atypical beta adrenoceptors (beta 3 adrenoceptor) mediated relaxation of canine isolated bronchial smooth muscle. J App Physiol 1993; 74: 297–302.Google Scholar
  18. 18.
    Zaagsma J, Nahorski SR. Is the adipocyte β-adrenoceptor a prototype for the recently cloned atypical ‘β3-adrenoceptor’? Trends Pharmacol Sci 1990; 11: 3–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen X-H, Harden TK, Nicholas RA. Molecular cloning and characterisation of a novel β-adrenergic receptor. J Biol Chem 1994; 269: 24810–9.PubMedGoogle Scholar
  20. 20.
    Ariens EJ, Simonis AM. Physiological and pharmacological aspects of adrenergic receptor classification. Biochem Pharmacol 1983; 32: 1539–45.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Donnell SR, Saar N, Wood LJ. The density of adrenergic nerves at various levels in the guinea-pig lung. Clin Exp Pharmacol Physiol 1978; 5: 325–332.PubMedCrossRefGoogle Scholar
  22. 22.
    Minneman KP, Hedberg A, Molinoff PB. Comparison of β adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther 1979; 211: 502–8.PubMedGoogle Scholar
  23. 23.
    Dooley DJ, Bittiger H, Reymann NC. CGP 20712A; a useful tool for quantifying β1-and β2adrenoceptors. Eur J Pharmacol 1986; 130: 137–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Sommers Smith SK, Giannopoulos G. Identification of beta adrenergic receptors in pulmonary alvedar type II cells. Life Sci 1983; 33: 2071–78.CrossRefGoogle Scholar
  25. 25.
    Rugg EL, Barnett DB, Nahorski SR. Coexistence of beta1-and beta2-adrenoceptors in mammalian lung: evidence from direct binding studies. Mol Pharmacol 1978; 14: 996–1005.PubMedGoogle Scholar
  26. 26.
    Barnes PJ, Karliner JS, Dollery CT. Human lung adrenoceptors studied by radioligand binding. Clin Sci 1980; 58: 457–61.PubMedGoogle Scholar
  27. 27.
    Engels F, Carstairs JR, Barnes PJ, Nijkamp FP. Autoradiographic localization of changes in pulmonary β-adrenoceptors in an animal model of atopy. Eur J Pharmacol 1989; 164: 139–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Carstairs JR, Nimmo AJ, Barnes PJ. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis 1985; 132: 541–7.PubMedGoogle Scholar
  29. 29.
    Benovic JL, Stiles GL, Lefkowitz RJ, Caron MG. Photoaffinity labelling of mammalian beta-adrenergic receptors: metal-dependent proteolysis explains apparent heterogeneity Biochem Biophys Res Commun 1983; 110: 504–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Brodde OE, Kuhlhoff F, Arroyo J, Prywarra A. No evidence for temperature-dependent changes in the pharmacological specificity of beta-1 and beta-2 adrenoceptors in rabbit lung membranes. Naunyn-Schmiedeberg Arch Pharmacol 1983; 322: 20–8.CrossRefGoogle Scholar
  31. 31.
    Barnett DB, Rugg EL, Nahorski SR. Direct evidence of two types of β-adrenoceptor binding in lung tissue. Nature 1978; 273: 166–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Barnes PJ, Basbaum CB. Mapping of adrenergic receptors in the trachea by autoradiography. Exp Lung Res 1983; 5: 183–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Barnes PJ, Basbaum CB, Nadel JA, Roberts JM. Localizatoin of beta-adrenoceptors in mammalian lung by light microscopic autoradiography. Nature 1982; 299: 444–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Lemoine H, Overlack C. Highly potent beta 2-sympathomimetics convert to less potent partial agonists as relaxants of guinea-pig tracheae maximally contracted by carbachol. Comparison of relaxation with receptor binding and adenylate cyclase stimulation. J Pharmacol Exp Ther 1992; 261: 258–270.PubMedGoogle Scholar
  35. 35.
    Szentivanyi A. The conformational flexibility of adrenoceptors and the constitutional basis of atopy. Triangle 1979; 18: 109–15.PubMedGoogle Scholar
  36. 36.
    Zaagsma J, Van Amsterdam RGM, Brouwer F, Van der Heijden PJCM, Van der Schaar MWG, Verwey WM, Veenstra V. Adrenergic control of airway function. Am Rev Respir Dis 1987; 136: (Supplement) S45–9.PubMedGoogle Scholar
  37. 37.
    Barnes PJ, Nadel JA, Skoogh BE, Roberts JM. Characterization of beta-adrenoceptor subtypes in canine airway smooth muscle by radioligand binding and physiological responses. J Pharmacol Exp Ther 1983; 225: 456–61.PubMedGoogle Scholar
  38. 38.
    Barnes PJ, Basbaum CB. Mapping of adrenergic receptors in the trachea by autoradiography. Exp Lung Res 1983; 5: 183–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Carswell H, Nahorski SR. Beta adrenoceptor heterogeneity in guinea-pig airways: comparison of functional and receptor labelling studies. Br J Pharmacol 1983; 79: 965–71.PubMedGoogle Scholar
  40. 40.
    Henry PJ, Rigby PJ, Goldie RG. Distribution of β-1 and β-2-adrenoceptors in mouse trachea and lung: a quantitative autoradiographic study. Br J Pharmacol 1990; 99: 136–44.PubMedGoogle Scholar
  41. 41.
    Tomkinson A, Karlsson JA, Raeburn D. Comparison of the effects of selective inhibitor of phosphodiesterase types III and IV in airway smooth muscle with differing beta-adrenoceptor subtypes. Br J Pharmacol 1993; 108: 57–61.PubMedGoogle Scholar
  42. 42.
    Garssen J, van Loveren H, van der Vliet H, Nijkamp FP. An isometeric method to study respiratory smooth muscle reponses in the mouse. J Pharmacol Meth 1990; 24: 209–17.CrossRefGoogle Scholar
  43. 43.
    Apperly GH, Levy GP. Characterization of the beta adrenoceptors of guinea-pig tracheobronchial, skeletal and cardiac muscle. Br J Pharmacol 1975; 54: 260–261.Google Scholar
  44. 44.
    Everitt BJ, Cairncross KD. Adrenergic receptors in the guinea-pig trachea. J Pharm Pharmacol 1969; 21: 97–102.PubMedCrossRefGoogle Scholar
  45. 45.
    Furchgott RF. Postsynaptic adrenergic receptor mechanisms in vascular smooth muscle. In: Bevan JA, editor. Vascular neuroeffector systems. Basel: Karger, 1976: 131–142.Google Scholar
  46. 46.
    Zaagsma J, Oudhof R, Van der Heijden PJCM, Plantje JF. Subheterogeneity of beta-adrenoceptors in the pulmonary abd cardiac systems of the guinea-pig. In: Usdin E, Kopin I, Barchas J, editors. Catecholamines, basic and clinical frontiers. New York: Pergamin Press, 1979; 435–437.Google Scholar
  47. 47.
    Zaagsma J, Van der Heijden PJCM, Van der Schaar MWG, Bank CMC. Comparison of functional β-adrenoceptor heterogeneity in central and peripheral airway smooth muscle of guinea pig and man. J Recep Res 1983; 3: 89–106.Google Scholar
  48. 48.
    Lulich KM, Mitchell HW, Sparrow MP. The cat lung strip as an in vitro preparation of peripheral airways: A comparision of β-adrenoceptor agonists, autacoids and anaphylactic challenge on the lung strip and trachea. Br J Pharmacol 1976; 58: 71–9.PubMedGoogle Scholar
  49. 49.
    Toda N, Hayashi S, Hatano Y, Okunishi H, Miyazaki M. Selectivity and steric effects of metoprolol isomers on isolated rabbit atria, arteries and tracheal muscles. J Pharmacol Exp Ther 1978; 207: 311–19.PubMedGoogle Scholar
  50. 50.
    Lemoine H, Novotny GEK, Kauman AJ. Neuronally released (—) noradrenaline relaxes smooth muscle of calf trachea mainly through beta 1-adrenoceptors: comparison with (—) adrenaline and relationship to adenylate cyclase stimulation. Nauyn Schmiedeberg’s Arch Pharmacol 1989; 389: 85–98.Google Scholar
  51. 51.
    Goldie RG, Papadimitriou JM, Paterson JW, Rigby PJ, Spina D. Autoradiographic localization of β-adrenoceptors in pig lung using [125I]-idocyanopindolol. Br J Pharmacol 1986; 88: 621–8.PubMedGoogle Scholar
  52. 52.
    Leff AR, Munoz NM, Hendrix SG. Comparative distribution of smooth muscle postsynaptic contractile responses in canine trachea and bronchus in vivo. J Pharmacol Exp Ther 1983; 224: 259–64.PubMedGoogle Scholar
  53. 53.
    Leff AR, Munoz NM, Hendrix SG. Parasympathetic and adrenergic contractile responses in canine trachea and bronchus. J Appl Physiol 1983; 55: 113–20.PubMedGoogle Scholar
  54. 54.
    Leff AR, Munoz NM, Tallet J, David AC, Cavigelli MA, Garrity ER. Autonomic response characterisitics of porcine airway smooth muscle. J Appl Physiol 1985; 58: 1176–88.PubMedGoogle Scholar
  55. 55.
    Kannan MS, Daniel EE. Structural and functional study of the control of canine tracheal smooth muscle. Am J Physiol 1980; 238: C27–33.PubMedGoogle Scholar
  56. 56.
    Jansen LJ, Daniel EE. Classification of postjunctional β-adrenoceptors mediating relaxation of canine bronchi. J Pharmacol Exp Ther 1991; 256: 670–6.Google Scholar
  57. 57.
    Vermeire PA, Vanhoutte PM. Inhibitory effects of catecholamines in isolated canine bronchial smooth muscle. J Appl Physiol 1979; 46: 787–91.PubMedGoogle Scholar
  58. 58.
    Russel JA. Differential inhibitory effect of isoproterenol on contractions of canine airways. J Appl Physiol 1984; 57: 801–7.Google Scholar
  59. 59.
    Hashimoto T, Hirata M, Ito Y. A role for inositol 1,4,5 trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol 1985; 86: 191–9.PubMedGoogle Scholar
  60. 60.
    Bergen J, Kroeger EA. Adrenoceptor mediated mechanical responses of canine tracheal smooth muscle. J Pharmacol Exp Ther 1986; 238: 679–84.PubMedGoogle Scholar
  61. 61.
    Goldie RG, Paterson JW, Spina D, Classification of β-adrenoceptors in human isolated bronchus. Br J Pharmacol 1984; 81: 611–5.PubMedGoogle Scholar
  62. 62.
    Davis C, Kannan MS, Jones TR, Daniel EE. Control of human airway smooth muscle; in vitro studies. J Appl Physiol 1982; 53: 1080–7.PubMedGoogle Scholar
  63. 63.
    Harms HH. Isoproterenol antagonism of cardioselective beta adrenergic receptor blocking agents: A comparative study of human and guinea-pig cardiac and bronchial beta-adrenergic receptors. J Pharmacol Exp Ther 1976; 199: 329–35.PubMedGoogle Scholar
  64. 64.
    Cerrina J, Ladurie ML, Labat C. Comparison of human bronchial muscle response to histamine in vivo with histamine and isoproterenol agonists in vitro. Am Rev Respir Dis 1986; 134: 57–61.PubMedGoogle Scholar
  65. 65.
    Torphy TJ, Burman M, Schwartz LW, Wasserman MA. Differential effects of methacholine and leukotriene D4 on cyclic nucleotide content and isoproterenol-induced relaxation in the opossum trachea. J Pharmacol Exp Ther 1986; 237: 332–40.PubMedGoogle Scholar
  66. 66.
    Habecker BA, Landis SC. Noradrenergic regulation of cholinergic phenotype. Science 1994; 264: 1602–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Levy FO, Zhu X, Kaumann AO, Birnbaumer L. Efficacy of beta 1-adrenoceptors is lower than that of beta 2-adrenoceptors. Proc Nat Acad Sci 1993; 90: 10798–802.PubMedCrossRefGoogle Scholar
  68. 68.
    Turker K, Kiran BK. Arch Int Pharmacodyn Ther 1965; 168: 212–9.Google Scholar
  69. 69.
    Fleisch JH, Maling HM, Brodie BB. Evidence for existence of alpha-adrenergic receptors in the mammalian trachea. Am J Physiol 1970; 218: 596–9.PubMedGoogle Scholar
  70. 70.
    Beinfield WH, Seifter J. Contraction of dog trachealis muscle in vivo: role of α-adrenergic receptors. J Appl Physiol 1980; 48: 329–36.PubMedGoogle Scholar
  71. 71.
    Ohno Y, Watanabe M, Kasuya Y. Manifestation of latent alpha-excitatory response in the canine tracheal smooth muscle preparation-relation to basal tone. Arch Int Pharmacodyn Ther 1981; 251: 205–16.PubMedGoogle Scholar
  72. 72.
    Leff AR, Munoz NM. Interrelationsip between alpa-and beta-adrenergic agonists and histamine in canine airways. J Allergy Clin Immunol 1981; 69: 300–9.CrossRefGoogle Scholar
  73. 73.
    Brown JK, Shields R, Jones C, Gold WM. Augmentation of α-adrenergic contractions in the trachealis muscle of living dogs. J Appl Physiol 1983; 54: 1558–1566.PubMedGoogle Scholar
  74. 74.
    Leff AR, Munoz NM. Evidence for two subtypes of alpha adrenergic receptors in canine airway smooth muscle. J Pharmacol Exp Ther 1981; 217: 530–5.PubMedGoogle Scholar
  75. 75.
    Barnes PJ, Skoogh BE, Nadel JA, Roberts JM. Postsynaptic alpha-adrenoceptors predominate over alpha,-adrenoceptors in canine tracheal smooth muscle and mediate neuronal and hormonal alpha-adrenergic contraction. Mol Pharmacol 1983; 23: 570–5.PubMedGoogle Scholar
  76. 76.
    Satoh M, Takayamagi I. Identification and characterisation of the alpha 2D adrenoceptor subtype in single cells prepared from guinea-pig tracheal smooth muscle. Jpn J Pharmacol 1992; 60: 393–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Mathe AA, Astrom A, Persson N-A. Some bronchoconstricting and bronchodilating responses of human isolated bronchi: evidence for the existence of alpha-adrenoceptors. J Pharm Pharmacol 1971; 23: 905–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Guirgis M, McNeill RS. The nature of the adrenergic receptors in isolated human bronchi. Thorax 1969; 24: 613–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Simonsson BG, Svedmyr N, Skoogh B-E, Andersson R, Bergh NP. In vivo and in vitro studies on alpha-receptors in human airways. Potentiation with bacterial endotoxin. Scand J Respir Dis 1972; 52: 227–36.Google Scholar
  80. 80.
    Kneussl MP, Richardson JB. Alpha-adrenergic receptors in human and canine tracheal and bronchial smooth muscle. J Appl Physiol 1978; 45: 307–11.PubMedGoogle Scholar
  81. 81.
    Grundstrom N, Andersson RGG. Inhibition of the cholinergic neurotransmission in human airways via prejunctional alpha-2-adrenoceptors. Acta physiol Scand 1985; 125: 513–7.PubMedCrossRefGoogle Scholar
  82. 82.
    George ST, Ruoho AE, Malbon CC. N-Glycosylation in expression and function of β-adrenergic receptors. J Biol Chem 1986; 261: 16559–64.PubMedGoogle Scholar
  83. 83.
    von Zastrow M, Kobilka BK. Antagonist-dependent and-independent steps in the mechanisms of adrenergic receptor internalisation. J Biol Chem 1994; 269: 18448–52.Google Scholar
  84. 84.
    Suzuki T, Nguygen CT, Nantel F, Bonin H, Valquiette M, Frielle T, Bouvier M. Distinct regulation of beta-1 and beta-2 adrenergic receptors in Chinese hamster fibroblasts. Mol Pharmacol 1991; 41: 542–8.Google Scholar
  85. 85.
    Neve KA, Molinoff PB. Turnover of beta 1-adrenergic receptor and beta 2-adrenergic receptor after down regulation or irreversible blockade. Mol Pharmacol 1986; 30: 104–11.PubMedGoogle Scholar
  86. 86.
    Malbon CC, Moxham CP, Brandwein HJ. Antibodies to beta adrenergic receptors. In: Perkins JP, editor. The Beta-adrenergic receptors. New Jersey: Humana Press Inc., 1991: 181–261.CrossRefGoogle Scholar
  87. 87.
    George ST, Berrios M, Hadcock JR, Wang H-Y, Malbon CC. Receptor density and cyclic AMP accumulation: analysis in CHO cells exhibiting stable expression of a cDNA that encodes the beta 2-adrenergic receptor. Biochem Biophys Res Commum 1989; 150: 665–72.CrossRefGoogle Scholar
  88. 88.
    Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF. Identification of serine residues involved in agonist activation of the β-adrenergic receptor. J Biol Chem 1989; 264: 13572–8.PubMedGoogle Scholar
  89. 89.
    Wang HS, Berrios M, Malbon CC. Localisation of beta adrenergic receptors in A431 cells in situ: effect of chronic exposure to agonist. Biochem J 1989; 263: 533–8.PubMedGoogle Scholar
  90. 90.
    Henderson R, Unwin PNT. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 1975; 257: 28–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Rhodes DG, Newton R, Butler R, Herbette L. Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers. Mol Pharmacol 1992; 42: 596–602.PubMedGoogle Scholar
  92. 92.
    Frielle T, Daniel KW, Caron MG, Lefkowitz RG. Structural basis of β-adrenergic receptor subtype specificity studied with chimeric β12-adrenergic receptors. Proc Natl Acad Sci 1988; 85: 9494–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Dixon RAF, Sigal IS, Candelore MR, Register RB, Scattergood W, Rands E. Structural features required for ligand binding to the β-adrenergic receptor. EMBO J 1987; 6: 3269–75.PubMedGoogle Scholar
  94. 94.
    Dixon RAF, Kobilka BK, Strader CJ. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 1986; 321: 75–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Dixon RAF, Sigal IS, Rands E. Ligand binding to the β-adrenergic receptor involves its rhodopsin-like core. Nature 1987; 326: 73–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Benovic JL, Stanizewski C, Cerione RA, Codina J, Lefkowitz RJ, Caron MG. The mammalian β-adrenoceptor: structure and function of the carbohydrate moiety. J Recep Res 1987; 7: 257–81.Google Scholar
  97. 97.
    Allen JM, Baetge EE, Abrass IB, Palmiter RD. Isoproternol response following transfection of the mouse beta2-adrenergic receptor gene into Y1 cells. EMBO J 1988; 7: 133–8.PubMedGoogle Scholar
  98. 98.
    Nakada MT, Haskell KM, Ecker DJ, Stadel JM, Crooke ST. Genetic regulation of β2-adrenergic receptors in 3T3-L1 fibroblasts. Biochem J 1989; 260: 53–9.PubMedGoogle Scholar
  99. 99.
    Gocayne J, Robinson DA, Fitzgerald MG, Chung FZ, Kerlavage AR, Lentes KU, Lai J, Wang CD, Fraser CM, Venter JC. Primary structure of rat cardiac β-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: Further evidence for a multigene family. Proc Natl Acad Sci 1987; 84: 8296–300.PubMedCrossRefGoogle Scholar
  100. 100.
    Buckland PR, Hill RM, Tidmarsh SF, McGuffin P. Primary structure of the rat beta-2 adrenergic receptor gene. Nucleic Acid Res 1990; 18: 682.PubMedCrossRefGoogle Scholar
  101. 101.
    Schofield PR, Rhee LM, Peralta EG. Primary structure of the human beta-adrenergic receptor gene. Nucleic Acid Res 1987; 15: 3636.PubMedCrossRefGoogle Scholar
  102. 102.
    Kobilka BK, Frielle T, Dohlman HG, Bolanowski MA, Dixon RAF, Keller P, et al. Delineation of the intronless nature of the genes for the human and hamster β2-adrenergic receptor and their putative promoter regions. J Biol Chem 1987; 262: 7321–7.PubMedGoogle Scholar
  103. 103.
    Emorine LJ, Marullo S, Delavier-Klutchko C. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization. Proc Natl Acad Sci 1987; 84: 6995–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Chung FZ, Wang CD, Potter PC, Venter JC, Fraser CM. Site-directed mutagenesis and continuous expression of human β-adrenergic receptors. J Biol Chem 1988; 263: 4052–5.PubMedGoogle Scholar
  105. 105.
    O’Dowd BF, Hantowich M, Caron MG, Lefkowitz RJ, Bouvier M. Palmitoylation of the human β2-adrenergic receptor. J Biol Chem 1989; 264: 7564–9.PubMedGoogle Scholar
  106. 106.
    Dohlman HG, Bouvier M, Benovic JL. The multiple membrane spanning topography of the β2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J Biol Chem 1987; 262: 1428–8.Google Scholar
  107. 107.
    Fraser CM, Venter JC. The synthesis of β-adrenergic receptors in cultured human lung cells: induction by glucocorticoids. Biochem Biophys Res Commun 1980; 94: 390–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Tota MR, Candelore MR, Dixon RAF, Strader CD. Biophysical and genetic analysis of the ligand-binding site of the beta-adrenoceptor. Trends Pharmacol Sci 1991; 12: 4–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Wang HY, Lipfert L, Malbon CC, Bahouth S. Site directed antipeptide antibodies define the topology of the β-adrenergic receptor. J Biol Chem 1989; 264: 14424–31.PubMedGoogle Scholar
  110. 110.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH. Model for the structure of bacteriorhodopsin based on high resolution electron cryomiscoscopy. J Mol Biol 1990; 213: 899–929.PubMedCrossRefGoogle Scholar
  111. 111.
    Hibert MF, Trump-Kallmeyer S, Bruinvels A. Three-dimensional models of neurotransmitter G-binding protein coupled receptors. Mol Pharmacol 1991; 40: 8–15.PubMedGoogle Scholar
  112. 112.
    Dixon RAF, Sigal IS, Strader CD. Structure-function analysis of the β-adrenergic receptor. Cold Spring Harbor Symp Quant Biol 1988; 53: 487–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Kobilka BK, Kobilka TS, Daniel K. Regan JW, Caron MG, Lefkowitz RF. Chimeric α2-, β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 1988; 240: 1310–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Strader CD, Sigal IS, Register RB, Candelore MR, Rands E, Dixon RAF. Identification of residues required for ligand binding to the β-adrenergic receptor. Proc Natl Acad Sci 1987; 84: 4384–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RAF. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J Biol Chem 1988; 263: 10267–71.PubMedGoogle Scholar
  116. 116.
    Pedersen SE, Ross EM. Functional activation of β-adrenergic receptors by thiols in the presence and absence of agonists. J Biol Chem 1985; 260: 14150–7.PubMedGoogle Scholar
  117. 117.
    Lucas M, Hanoune J, Bockaert J. Chemical modification of the beta adrenergic receptors coupled with adenylate cyclase by disulfide bridge-reducing agents. Mol Pharmacol 1978; 14: 227–36.PubMedGoogle Scholar
  118. 118.
    Niais AT, Sumner MJ, Johnson M, Coleman RA. Investigations into factors determining the duration of action of the beta 2-adrenoceptor agonist salmeterol. Br J Pharmacol 1993; 108: 507–15.Google Scholar
  119. 119.
    Löfdahl CG. Basic pharmacology of new long-acting sympathomimetics. Lung 1990; 168: 18–21.PubMedCrossRefGoogle Scholar
  120. 120.
    Marullo S, Emorine L, Strosberg AD, Delavier-Klutschko C. Selective binding of ligands to β1/β2-adrenergic receptor involves multiple subsites. EMBO J 1990; 9: 1471–6.PubMedGoogle Scholar
  121. 121.
    Lewell XQ. A model of the adrenergic beta2-receptor and binding sites for agonists and antagonists. Drug Design Discovery 1992; 9: 29–48.Google Scholar
  122. 122.
    Dahl SG, Edvardsen O, Sylte I. Molecular dynamics of dopamine at the D2 receptor. Proc Natl Acad Sci USA 1991; 88: 8111–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Suryanarayana S, Daunt DA, Zastrow MV, Kobilka BK. A point mutation in the seventh hydrophobic domain of the α-2 adrenergic receptor increases its affinity for a family of β receptor antagonists. J Biol Chem 1991; 266: 15488–92.PubMedGoogle Scholar
  124. 124.
    Linden A, Bergendal A, Ullman A, Skoogh BE, Löfdahl CG. High concentrations of formoterol and salmeterol in the isolated guinea pig trachea. Reassertion of smooth muscle relaxation after beta blockade followed by wash-out. Am Rev Respir Dis 1991; 143: A749.Google Scholar
  125. 125.
    Anderson GP, Linden A, Rabe KF. Why are long acting beta-adrenoceptor agonists long acting? Eur Respir J 1994; 7: 569–78.PubMedCrossRefGoogle Scholar
  126. 126.
    Lefkowitz RJ, Mullikin D, Caron MG. Regulation of beta-adrenergic receptors by guanyl-5’-ylimidophosphate and other purine nucleotides. J Biol Chem 1976; 251: 4686–92.PubMedGoogle Scholar
  127. 127.
    Maguire MB, VanArsdale PM, Gilman AG. An agonist-specific effect of guanine nucleotides on binding to the beta-adrenergic receptor. Mol Pharmacol 1976; 12: 335–9.PubMedGoogle Scholar
  128. 128.
    Kent RS, De Lean A, Lefkowitz RJ. A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 1980; 17: 14–28.PubMedGoogle Scholar
  129. 129.
    Bird SJ, Maguire ME. The agonist-specific effect of magnesium ion on the binding by beta adrenergic receptors in S49 lymphoma cells: interaction of GTP and magnesium on adenylate cyclase activation. J Biol Chem 1978; 253: 8826–9.PubMedGoogle Scholar
  130. 130.
    Williams LT, Mullikin D, Lefkowitz RJ. Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J Biol Chem 1978; 253: 2984–9.PubMedGoogle Scholar
  131. 131.
    Lefkowitz RJ, Williams LT. Catecholamine binding to the beta-adrenergic receptor. Proc Nat Acad Sci 1977; 74: 515–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Stadel JM, DeLean A, Lefkowitz, RJ. A high affinity agonist beta adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes. J Biol Chem 1980; 255: 1436–41.PubMedGoogle Scholar
  133. 133.
    Altiere RJ, Douglas JS, Gillis CN. Temperature related effects on the binding characteristics of beta-adrenergic receptor agonsits and antagonists by rabbit lung. Naunyn-Schmied Arch Pharmacol 1981; 316: 278–87.CrossRefGoogle Scholar
  134. 134.
    Johansson LH, Perssonm H, Rosengren E. The role of Mg2+ on the formation of the ternary complex between agonist, beta-adrenoceptor, and Gs-protein and an interpretation of high and low affinity binding of beta-adrenoceptor agonists. Pharmacol Toxicol 1992; 70: 192–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Matsui H, Lefkowitz RJ, Caron MC, Regan MG. Localization of the fourth membrane spanning domain as the ligand binding site in the human platelet alpha 2 adrenergic receptor. Biochemistry 1989; 28: 4125–30.PubMedCrossRefGoogle Scholar
  136. 136.
    Cotecchia S, Exum S, Caron MG, Lefkowitz RJ. Regions of the α1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci 1990; 87: 2896–900.PubMedCrossRefGoogle Scholar
  137. 137.
    Cotecchia S, Ostrowski J, Kjelsberg MA. Discrete amino acid sequences of the α1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J Biol Chem 1992; 267: 1633–9.PubMedGoogle Scholar
  138. 138.
    Wang C-D, Buck MA, Fraser CM. Site directed mutagenesis of α2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol 1991; 40: 168–179.PubMedGoogle Scholar
  139. 139.
    Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ, Limbird LE. An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J Biol Chem 1990; 265: 21590–5.PubMedGoogle Scholar
  140. 140.
    Benovic JL, Regan MG, Matsui H, Mayor F, Cotecchia S, Lefkowitz RJ. Agonist dependent phosphorylation of the alpha 2 adrenergic receptor by the beta-adrenergic receptor kinase. J Biol Chem 1987; 262: 17251–3.PubMedGoogle Scholar
  141. 141.
    Bouvier M, Lees-Lundberg LM, Benovic JL, Caron MG, Lefkowitz RJ. Regulation of adrenergic receptor function by phosphorylation. J Biol Chem 1987; 262: 3106–13.PubMedGoogle Scholar
  142. 142.
    Gilman AG. Transducers of receptor-generated signals. Ann Rev Biochem 1987; 56: 615–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Bray P, Carter A. Human cDNA clones for four species of Gas signal transduction protein. Proc Natl Acad Sci 1986; 83: 8893–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Mattera R, Graziano MP, Yatani A, Zhou Z, Graf R, Codina J. Splice variants of the α subunit of the G-protein Gs activate both adenylyl cyclase and calcium channels. Science 1989; 243: 804–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 1987; 262: 14241–9.PubMedGoogle Scholar
  146. 146.
    Pyne NJ, Grady MW, Shehnaz D, Stevens PA, Pyne S, Rodger IW. Muscarinic blockade of β-adrenoceptor-stimulated adenylyl cyclase: the role of stimulatory and inhibitory guanine-nucleotide binding regulatory proteins (Gs and Gi). Br J Pharmacol 1992; 107: 881–7.PubMedGoogle Scholar
  147. 147.
    Pederson SE, Ross EM. Functional reconstitution of beta-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Proc Natl Acad Sci 1982; 79: 7228–32.CrossRefGoogle Scholar
  148. 148.
    Levitski A, Bar-Sinai A. The regulation of adenylyl cyclase by receptor operated G-proteins. Pharmacol Ther 1991; 50: 271–83.CrossRefGoogle Scholar
  149. 149.
    Litman BJ, Aton B, Hartley JB. Functional domains of rhodopsin. Vision Res 1982; 22: 1439–42.PubMedCrossRefGoogle Scholar
  150. 150.
    Cheung AH, Huang RRC, Strader C. Involvement of specific hydrophobic, but not hydrophilic, amino acids in the third intracellular loop of the beta adrenergic receptor in the activation of Gs. Mol Pharmacol 1992; 41: 1061–5.PubMedGoogle Scholar
  151. 151.
    Ostrowski J, Kjelsberg MA, Caron MC, Lefkowitz RJ. Mutagenesis of the beta 2-adrenergic receptor: how structure elucidates function. Ann Rev Pharmacol Toxicol 1992: 167-83.Google Scholar
  152. 152.
    Higashijima T, Uzu S. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins. J Biol Chem 1988; 263: 6491–4.PubMedGoogle Scholar
  153. 153.
    De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 1980; 255: 7108–17.PubMedGoogle Scholar
  154. 154.
    Stadel JM, Shorr RG, Limbird LE, Lefkowitz RJ. Evidence that beta-adrenergic receptor-associated guanine nucleotide regulatory protein conveys guanosine 5’-0-(3-thiotriphosphate)-dependent adenylate cyclase activity. J Biol Chem 1981; 256: 8718–23.PubMedGoogle Scholar
  155. 155.
    Londos C, Salomon Y, Lin MC, Harwood JP, Schramm M, Wolff J, et al. 5’-Guanylymidodiphosphate: a potent activator of adenylate cyclase systems from eukaryotic cells. Proc Natl Acad Sci 1974; 71: 3087–90.PubMedCrossRefGoogle Scholar
  156. 156.
    Neubig RR, Gantzos RD, Brasier RS. Agonist and antagonist binding to α2-adrenergic receptors in purified membranes from human platelet: implications of receptor-inhibitory nucleotide binding protein stoichiometry. Mol Pharmacol 1985; 28: 475–86.PubMedGoogle Scholar
  157. 157.
    Wong HM, Sole MJ, Wells JW. Assessment of mechanistic proposals for the binding of agonists to cardiac muscarinic receptors. Biochemistry 1986; 25: 6995–7008.PubMedCrossRefGoogle Scholar
  158. 158.
    Wreggett KA, De Lean A. The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol Pharmacol 1984; 26: 214–27.PubMedGoogle Scholar
  159. 159.
    Ransäs LA, Insel PA. Quantitation of the guanine nucleotide binding regulatory protein G5 in S49 cell membranes using antipeptide antibodies to α5. J Biol Chem 1988; 263: 9482–5.Google Scholar
  160. 160.
    Bar-Sinai A, Marbach I, Shorr RGL, Levitski A. The GppNHp-activated adenylyl cyclase complex from turkey erythrocytes can be isolated with its βγ subunits. Eur J Biochem 1994; 207: 703–8.CrossRefGoogle Scholar
  161. 161.
    Tolkovsky AM, Levitzki A. Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 1978; 17: 3795–810.PubMedCrossRefGoogle Scholar
  162. 162.
    Tolkovsky AM, Levitzki A. Theories and predictions of models describing sequential interactions between the receptor, the GTP regulatory unit and the catalytic unit of adenylyl cyclase. J Cyclic Nucl Res 1991; 1: 139–50.Google Scholar
  163. 163.
    Tolkovsky AM, Braun S, Levitzki A. Kinetics of interaction between β-adrenergic receptors, GTP protein and the catalytic unit of turkey erythrocyte adenylate cyclase. Proc Natl Acad Sci 1982; 79: 213–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Stickle D, Barker R. Estimation of the kinetic constants for binding of epinephrine to β-adrenergic receptors of the S49 cell. Biochem Pharmacol 1991; 42: 1069–77.PubMedCrossRefGoogle Scholar
  165. 165.
    Stickle D, Barker R. The encounter coupling model for β-adrenergic receptor/GTP-binding protein interactions: calculation of the encounter frequency. Biochem Pharmacol 1992; 43: 2015–28.PubMedCrossRefGoogle Scholar
  166. 166.
    Stickle D, Barker R. Analysis of the receptor mediated activation of GTP-binding protein/adenylate cyclase using the encounter coupling model. Mol Pharmacol 1992; 43: 397–411.Google Scholar
  167. 167.
    Neubig RR, Gantzos RD, Thomson WJ. Mechanism of agonist and antagonist binding to α2 adrenergic receptors: evidence for a precoupled receptor-guanine nucleotide protein complex. Biochemistry 1988; 27: 2374–84.PubMedCrossRefGoogle Scholar
  168. 168.
    Nielsen-Kudsk JE, Karlsson JA, Persson CGA. Relaxant effects of xanthines, a beta-2 receptor agonist and Ca2+ antagonists in guinea-pig tracheal preparations precontracted by pottasium or carbachol. Eur J Pharmacol 1988; 128: 33–40.CrossRefGoogle Scholar
  169. 169.
    Gerthoffer WT. Calcium dependence of myosin phosphorylation and airway smooth muscle contraction and relaxation. Am J Physiol 1986; 250: C597–604.PubMedGoogle Scholar
  170. 170.
    Twort CHC, van Breeman C. Human airway smooth muscle in cell culturer control of the intracellular calcium store. Pulm Pharmacol 1989; 2: 45–53.PubMedCrossRefGoogle Scholar
  171. 171.
    Torphy TJ, Freese WB, Rinard GA, Brunton LL, Mayer SE. Cyclic nucleotide-dependent protein kinases in airway smooth muscle. J Biol Chem 1982; 257: 11609–16.PubMedGoogle Scholar
  172. 172.
    Hall IP, Hill SJ. Beta2-adrenoceptor stimulation inhibits histamine-stimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br J Pharmacol 1988; 95: 1204–12.PubMedGoogle Scholar
  173. 173.
    Jones CA, Madison JM, Tom-Moy M, Brown JK. Muscarinic cholinergic inhibition of adenylate cyclase in airway smooth muscle. Am J Physiol 1987; 253: C97–104.PubMedGoogle Scholar
  174. 174.
    Burka JF, Saad MH. Bronchodilator-mediated relaxation of normal and ovalbumin-sensitized guinea-pig airways: lack of correlation with adenylate cyclase activation. Br J Pharmacol 1984; 83: 645–55.PubMedGoogle Scholar
  175. 175.
    Kaumann AJ, Lemoine H. Separation of catecholamine binding and relaxation in bovine tracheal muscle dependent on cyclic AMP. J Physiol 1985; 348: 47P.Google Scholar
  176. 176.
    Wong KS, Buckner CK. Studies on beta-adrenoceptors mediating changes in mechanical events and 3’,5’-monophosphate levels in guinea-pig trachea. Eur J Pharmacol 1978; 42: 273–80.CrossRefGoogle Scholar
  177. 177.
    Sankary RM, Jones CA, Madison JM, Brown JK. Muscarinic cholinergic inhibition of cyclic AMP accumulation in airway smooth muscle. Role of a pertussis toxin-sensitive protein. Am Rev Respir Dis 1988; 138: 145–50.PubMedCrossRefGoogle Scholar
  178. 178.
    Giembycz MA, Diamond J. Evaluation of kemptide, a synthetic serine-containing heptapeptide, as a phosphate acceptor for the estimation of cyclic AMP-dependent protein kinase activity in respiratory tissues. Biochem Pharmacol 1990; 39: 271–283.PubMedCrossRefGoogle Scholar
  179. 179.
    Giembycz MA, Diamond J. Partial characterization of cyclic AMP-dependent protein kinases in guinea-pig lung employing the synthetic heptapeptide substrate, kemptide. In vitro sensitivity of the soluble enzyme to isoprenaline, forskolin, methacholine and leukotriene D4. Biochem Pharmacol 1990; 39: 1297–1312.PubMedCrossRefGoogle Scholar
  180. 180.
    De Lanerolle P, Paul RJ. Myosin phosphorylation/dephosphorylation and regulation of airway smooth muscle. Am J Physiol 1991; 291: L1–14.Google Scholar
  181. 181.
    Rodger IW. Calcium ions and contraction of airway smooth muscle. In: Kay AB, editor. Asthma; clinical pharmacology and experimental therapeutics. Oxford: Blackwell 1986: 114–27.Google Scholar
  182. 182.
    Giembycz MA, Raeburn D. Putative substrates for cyclic nucleotide-dependent protein kinases and the control of airway smooth muscle tone. J Auton Pharmacol 1991; 166: 365–98.CrossRefGoogle Scholar
  183. 183.
    Allen BG, Walsh MP. The biochemical basis of the regulation of smooth muscle contraction. Trends Biochem Sci 1994; 19: 362–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Scott JD. Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 1991; 50: 123–45.PubMedCrossRefGoogle Scholar
  185. 185.
    Torphy TJ, Zheng C, Peterson SM, Fiscus RR, Rinard GA, Mayer SE. Inhibitory effect of methacholine on drug-induced relaxation, cyclic AMP accumulation, and cyclic AMP-dependent protein kinase activation in canine tracheal smooth muscle. J Pharmacol Exp Ther 1985; 233: 409–17.PubMedGoogle Scholar
  186. 186.
    Barsony J, Marks SJ. Immunocytology on microwave fixed cells reveals rapid and agonist specific changes in subcellular accumulation patterns of cAMP and cGMP. Proc Natl Acad Sci 1990; 87: 1188–92.PubMedCrossRefGoogle Scholar
  187. 187.
    Laurenza A, Sutkowski EM, Seamon KB. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci 1989; 10: 442–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W, Vale WV, Montimy MR. A cluster of phosphorylation sites on the cyclic AMP regulated nuclear factor CREB predicted by its sequence. Nature 1989; 337: 749–52.PubMedCrossRefGoogle Scholar
  189. 189.
    Hoeffler JP, Habener JF. Characterization of a cyclic AMP regulatory element DNA-binding protein. Trends Endocrinol Metab 1990: 155-8.Google Scholar
  190. 190.
    Tortora G, Cho-Chung YS. Type II regulatory subunit of protein kinase restores cAMP dependent transcription in a cAMP unresponsive cell line. J Biol Chem 1990; 265: 18067–70.PubMedGoogle Scholar
  191. 191.
    Meinkoth JL, Ji Y, Taylor SS, Feramisco JR. Dynamics of the distribution of cyclic AMP-dependent protein kinase in living cells. Proc Natl Acad Sci 1990; 87: 9595–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Asano T, Katada T, Gilman AG, Ross EM. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by β-adrenergic receptors in reconstituted phospholipid vesicles. J Biol Chem 1984; 259: 9351–4.PubMedGoogle Scholar
  193. 193.
    Yang CM, Chou S-P, Sung T-C. Muscarinic receptor subtypes coupled to generation of different second messengers in isolated trachea smooth muscle cells. Br J Pharmacol 1991; 104: 613–8.PubMedGoogle Scholar
  194. 194.
    Hadcock JR, Ros M, Watkins DC, Malbon CC. Cross regulation between G-protein-mediated pathways: stimulation of adenyl cyclase increases expression of the inhibitory G protein, Giα2. J Biol Chem 1990; 265: 14784–90.PubMedGoogle Scholar
  195. 195.
    Katada T, Kusakabe K, Oinuma M, Ui M. A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. Calmodulin-dependent inhibition of the cyclase catalyst by the βγ subunits of the GTP-binding proteins. J Biol Chem 1987; 262: 11897–900.PubMedGoogle Scholar
  196. 196.
    Kameyama K, Haga K, Haga T, Kontani K, Katada T, Fukuda Y. Activation by G protein βγ subunits of the β-adrenergic and muscarinic receptor kinases. J Biol Chem 1993; 268: 7753–8.PubMedGoogle Scholar
  197. 197.
    Pang IH, Sternweis PC. Isolation of the alpha subunits of GTP-binding regulatory proteins by affinity chromatography with immobilized beta gamma subunits. Proc Natl Acad Sci 1989; 86: 7814–18.PubMedCrossRefGoogle Scholar
  198. 198.
    Pei G, Samama P, Lohse M, Wang M, Codina J, Lefkowitz RJ. A constitutively active mutant of the beta 2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc Natl Acad Sci 1994; 91: 2699–702.PubMedCrossRefGoogle Scholar
  199. 199.
    Pei G, Tiberi M, Caron MC, Lefkowitz RJ. An approach to the study of G protein coupled receptor kinases: an in vitro purified membrane assay reveals differential receptor specificities and regulation by Gβγ subunits. Proc Natl Acad Sci 1994; 91: 3633–6.PubMedCrossRefGoogle Scholar
  200. 200.
    Inglese J, Luttrell LM, Iniguez-Lluhi JA, Touhara K, Koch WJ, Lefkowitz RJ. Functionally active targeting domain of the β-adrenergic receptor kinase: an inhibitor of Gβγ-mediated stimulation of type II adenylyl cyclase. Proc Natl Acad Sci 1994: 3637-41.Google Scholar
  201. 201.
    Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwara MM, Caron MC, Lefkowitz RJ. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane bound receptors. Science 1993; 257: 1264–7.CrossRefGoogle Scholar
  202. 202.
    Mueller S, Hekman M, Lohse MJ. β-adrenergic receptor kinase activity by defined G-protein β and γ subunits. Proc Natl Acad Sci 1993; 90: 10439–43.CrossRefGoogle Scholar
  203. 203.
    Maguire MF, Erdus JJ. Inhibition of magnesium uptake by β-adrenergic agonists and prostaglandin El is not mediated by cyclic AMP. J Biol Chem 1980; 255: 1030–5.PubMedGoogle Scholar
  204. 204.
    Ito Y, Tajima K. Dual effects of catecholamines on pre-and postjunctional membranes in the dog trachea. Br J Pharmacol 1982; 75: 433–40.PubMedGoogle Scholar
  205. 205.
    Ito Y. Pre-and post-junctional actions of procaterol, a β2-adrenoceptor stimulant, on dog tracheal tissue. Br J Pharmacol 1988; 95: 268–74.PubMedGoogle Scholar
  206. 206.
    Fujiwara T, Sumimoto K, Itoh T, Kuriyama H. Relaxing actions of procaterol, a beta2-adrenoceptor stimulant, on smooth muscle cells of the dog trachea. Br J Pharmacol 1988; 93: 199–209.PubMedGoogle Scholar
  207. 207.
    Kirkpatrick CT. Tracheobronchial smooth muscle. In: Bulbring E, Brading AF, Jones AW, Tomita T, editors. Smooth muscle: an assessment of current knowledge. London: Edward Arnold, 1989; 1981: 385–95.Google Scholar
  208. 208.
    Allen SL, Beech DJ, Foster RW, Morgan GP, Small RC. Electrophysiological and other aspects of the relaxant action of isoprenaline in guinea-pig isolated trachealis. Br J Pharmacol 1985; 86: 843–54.PubMedGoogle Scholar
  209. 209.
    Cook SJ, Small RC, Berry JL, Chiu P, Downing SJ, Foster RW. β-adrenoceptor subtypes and the opening of plasmalemmal K+-channels in trachealis muscle: electrophysiological and mechanical studies in guinea-pig tissue. Br J Pharmacol 1993; 109: 1140–8.PubMedGoogle Scholar
  210. 210.
    Chiu P, Cook S, Small RC, Berry JL, Carpenter JR, Downing SJ, et al. β-adrenoceptor subtypes and the opening of plasmalemmal K+-channels in bovine trachealis muscle: studies of mechanical activity and ion fluxes. Br J Pharmacol 1993; 109: 1149–56.PubMedGoogle Scholar
  211. 211.
    Kume H, Takai A, Tokuno H, Tomita T. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature 1989; 341: 152–4.PubMedCrossRefGoogle Scholar
  212. 212.
    Kume H, Graziano MP, Kotlikoff MI. Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide binding proteins. Proc Natl Acad Sci 1992; 89: 11051–5PubMedCrossRefGoogle Scholar
  213. 213.
    Scheid CR, Honeyman TW, Fay FS. Mechanism of beta-adrenergic relaxation of airway smooth muscle. Nature 1979; 277: 32–6.PubMedCrossRefGoogle Scholar
  214. 214.
    Scheid CR, Fay FS. Beta-adrenergic effects on transmembrane fluxes in isolated smooth muscle cells. Am J Physiol 1984; 246: C431–8PubMedGoogle Scholar
  215. 215.
    Gunst SJ, Stropp JQ. Effect of Na-K adenosine triphosphatase activity on relaxation of canine tracheal smooth muscle. J Appl Physiol 1988; 64: 635–41.PubMedGoogle Scholar
  216. 216.
    Murray MA, Berry JL, Cook SJ, Foster RW, Grenn KA, Small RC. Guinea-pig isolated trachealis: the effects of charybdotoxin on mechanical activity, membrane potential changes and the activity of plasmalemmal K+-channels. Br J Pharmacol 1991; 103: 1814–8.PubMedGoogle Scholar
  217. 217.
    Jones TR, Charette L, Garcia M, Kaczorowski CJ. Selective inhibition of relaxation of guinea-pig trachea by charybdotoxin, a potent Ca++-activated K+ channel inhibitor. J Pharmacol Exp Ther 1990; 255: 697–706.PubMedGoogle Scholar
  218. 218.
    Jones TR, Charette L. Interaction of the Ca2+-activated K+ channel inhibitor iberiotoxin with beta-adrenoceptor agonists on isolated guinea pig trachea. Am Rev Respir Dis 1992; 142: A203.Google Scholar
  219. 219.
    Miura M, Belvisi MG, Stretton CD, Yacoub MH, Barnes PJ. Role of potassium channels in bronchodilator responses in human airways. Am Rev Respir Dis 1992; 146: 132–6.PubMedGoogle Scholar
  220. 220.
    Huang JC, Garcia ML, Reuben JP, Kaczorowski GJ. Inhibition of β-adrenoceptor agonist relaxation of airway smooth muscle by Ca2+-activated K+-channel blockers. Eur J Pharmacol 1993; 235: 37–43.PubMedCrossRefGoogle Scholar
  221. 221.
    Small RC, Chiu P, Cook SJ, Foster RW, Isaac L. β-adrenoceptor agonists in bronchial asthma: role of K+ channel opening in mediating their bronchodilator effects. Clin Exp Allergy 1993; 23: 802–11.PubMedCrossRefGoogle Scholar
  222. 222.
    Ljung B, Kjellstedt A. Functional antagonism of noradrenaline responses by felodipine and other calcium antagonists in vascular smooth muscle. J Cardiovasc Pharmacol 1988; 10: 82s–8.CrossRefGoogle Scholar
  223. 223.
    Burch RM, Luini A, Axelrod J. Phospholipase A2 and phospholipase C are activated by distinct GTP binding proteins in response to a-adrenergic stimulation in FRTL-5 thyroid cells. Proc Natl Acad Sci 1986; 83: 7201–5.PubMedCrossRefGoogle Scholar
  224. 224.
    Llahi S, Fain JN. α1-Adrenergic receptor mediated activation of phospholipase D in rat cerebral cortex. J Biol Chem 1992; 267: 3679–85.PubMedGoogle Scholar
  225. 225.
    Naline, E, Zhang Y, Qian Y, Mairon N, Anderson GP, Grandordy B, et al. Relaxant effects and durations of action of formoterol and salmeterol on the isolated human bronchus. Eur Respir J 1994; 7: 914–920.PubMedGoogle Scholar
  226. 226.
    Samama P, Pei G, Costa T, Cotecchia S, Lefkowitz RJ. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Mol Pharmacol 1994; 45: 390–4.PubMedGoogle Scholar
  227. 227.
    Arad H, Levitzki A. The mechanism of partial agonism in the β-receptor dependent adenylate cyclase of turkey erythrocytes. Mol Pharmacol 1979; 16: 748–56.Google Scholar
  228. 228.
    Milligan G. Techniques used in the identification and analysis of function of pertussin toxin-sensitive guanine nucleotide binding proteins. Biochem J 1988; 255: 1–13.PubMedGoogle Scholar
  229. 229.
    Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. J Biol Chem 1992; 267: 1430–3.PubMedGoogle Scholar
  230. 230.
    Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268: 4625–36.PubMedGoogle Scholar
  231. 231.
    Van Den Brink FG. The model of functional antagonism II. Experimental verification of a new model: the antagonism of β-adrenoceptor stimulants and other agonists. Eur J Pharmacol 1973; 22: 279–86.PubMedCrossRefGoogle Scholar
  232. 232.
    Meurs H, Zaagsma J. Pharmacological and biochemical changes in airway smooth muscle in relation to bronchial hyperresponsiveness. In: Agrawal DK, Townley RG, editors. Inflammatory Cells and Mediators in Bronchial Asthma. Boca Raton: CRC Press Inc., 1991: 1–38.Google Scholar
  233. 233.
    Baron CB, Cunningham M, Strauss JF, Coburn RF. Pharmaco-mechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc Natl Acad Sci USA 1984; 81: 6899–903.PubMedCrossRefGoogle Scholar
  234. 234.
    Abdel-Latif AA. Biochemical and functional interactions between the inositol 1,4,5-triphosphate-Ca2+ and cyclic AMP signalling systems in smooth muscle. Cellular Signalling 1991; 3: 371–85.PubMedCrossRefGoogle Scholar
  235. 235.
    Torphy TJ, Rinard GA, Rietow MG, Mayer SE. Functional antagonism in canine tracheal smooth muscle: inhibition by methacholine of the mechanical and bio-chemical responses to isoproterenol. J Pharmacol Exp Ther 1983; 227: 694–9.PubMedGoogle Scholar
  236. 236.
    Madison JM, Brown JK. Differential inhibitory effects of forskolin, isoproterenol and dibutyryl cyclic adenosine monophosphate on phosphoinositide hydrolysis in canine tracheal smooth muscle. J Clin Invest 1988; 82: 1462–5.PubMedCrossRefGoogle Scholar
  237. 237.
    Offer GJ, Chilvers ER, Nahorski SR. β-adrenoceptor induced inhibition of muscarinic receptor-stimulated phosphoinositide metabolism is agonist specific in bovine tracheal smooth muscle. Eur J Pharmacol 1991; 207: 243–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Meurs H, Kauffman HF, Timmermans A, Van Amsterdam ThM, Koëter GH, Timmermans A, De Vries K. Phorbol 12-myristate, 13-acetate induces beta-adrenergic receptor uncoupling and non-specific desensitization of adenylate cyclase in human mononuclear leukocytes. Biochem Pharmacol 1986; 35: 4217–22.PubMedCrossRefGoogle Scholar
  239. 239.
    Meurs H, Kauffman HF, Koëter GH, Timmermans A, De Vries K. Regulation of the beta-receptor-adenylate cyclase system in lymphocytes of allergic patients with asthma: possible role for protein kinase C in allergen-induced refractoriness of adenylate cyclase. J Allergy Clin Immunol 1987; 80: 326–39.PubMedCrossRefGoogle Scholar
  240. 240.
    Grandordy BM, Cuss FM, Sampson AS, Palmer JB, Barnes PJ. Phosphatidylinositol response to cholinergic agonists in airway smooth muscle: Relationship to contraction and muscarinic receptor occupancy. J Pharmacol Exp Ther 1986; 238: 273–9.PubMedGoogle Scholar
  241. 241.
    Grandordy BM, Rhoden KJ, Barnes PJ. Adrenoceptors decrease during activation of protein kinase C in airway smooth muscle. Thorax 1987; 42: 746.CrossRefGoogle Scholar
  242. 242.
    Grandordy BM, Mak JCW, Barnes PJ. Modulation of airway smooth muscle β-adrenoceptor function by a muscarinic agonist. Life Sci 1994; 54: 185–9.PubMedCrossRefGoogle Scholar
  243. 243.
    Van Amsterdam RGG, Meurs H, Brouwer F, Postema JB, Timmermans A, Zaagsma J. Role of phosphoinositide metabolism in functional antagonism of airway smooth muscle contraction by β-adrenoceptor agonists. Eur J Pharmacol 1989; 172: 175–83.PubMedCrossRefGoogle Scholar
  244. 244.
    Van Amsterdam RGM, Meurs H, Ten Berge REJ, Veninga NCM, Brouwer F, Zaagsma J. Role of phosphoinositide metabolism in human bronchial smooth muscle contraction and in functional antagonism by beta-adrenoceptor agonists. Am Rev Respir Dis 1990; 142: 1124–8.PubMedGoogle Scholar
  245. 245.
    Meurs H, Roffel AF, Postema JB, Timmermans A, Elzinga CRS, Kauffman HF, Zaagsma J. Evidence for a direct relationship between phosphoinositide metabolism and airway smooth muscle contraction induced by muscarinic agonists. Eur J Pharmacol 1988; 156: 271–4.PubMedCrossRefGoogle Scholar
  246. 246.
    Jenne JW, Shaughnessy TK, Druz WS, Manfredi CJ, Vestal RE. In vivo functional antagonism between isoproterenol and bronchoconstrictants in the dog. J Appl Physiol 1987; 63: 812–9.PubMedGoogle Scholar
  247. 247.
    Bai TR, Mak JCW, Barnes PJ. A comparison of beta-adrenergic receptors and in vitro relaxant responses to isoproterenol in asthmatic airway smooth muscle. Am J Respir Cell Mol Biol 1992; 6: 647–51.PubMedGoogle Scholar
  248. 248.
    Bai TR. Abnormalities in airway smooth muscle in fatal asthma: a comparison between trachea and bronchus. Am Rev Respir Dis 1991; 143: 441–443.PubMedGoogle Scholar
  249. 249.
    Bai TR, Mak JCW, Barnes PJ. A comparison of β2-adrenergic receptors and in vitro relaxant responses of isoprotenerol in asthmatic airway smooth muscle. Am J Respir Cell Mol Biol 1992; 6: 647–51.PubMedGoogle Scholar
  250. 250.
    Lucchesi P, Scheid CR, Romano FD, Kargacin ME, Mullikin-Kilpatrick D, Yamaguchi H, Honeyman TW. Ligand binding and G-protein coupling of muscarinic receptors in airway smooth muscle. Am J Physiol 1990; 27: C730–8.Google Scholar
  251. 251.
    Schramm GM, Grundstein MM. Assessment of signal transduction mechanisms regulating airway smooth muscle contractility. Am J Physiol 1992; 262: L119–39.PubMedGoogle Scholar
  252. 252.
    Meurs H, Van Amsterdam RGM, Roffel AF, Kauffman HF, Zaagsma J. Cross-talk between receptor mechanisms in relation to airway obstruction. Eur Respir J 1991; 4: Suppl. 14, 288s.Google Scholar
  253. 253.
    Wasner HK, Lemoine H, Jungerm E, Lessmann M, Kaumann R. Prostaglandylinositol cyclic phosphate, a new second messenger. In: Bailey JM, editor. Prostaglandins, leukotrienes, Lipoxins and PAF. New York: Plenum Press, 1992: 153–168.Google Scholar
  254. 254.
    Kume H, Kotlikoff M. Muscarinic inhibition of single Kca channels in smooth muscle cells by a pertussis sensitive G protein. Am J Physiol (Cell physiol) 1992; 261: C1204–9.Google Scholar
  255. 255.
    Shaw G. Identification of novel pleckstrin homology (PH) domains provides an hypothesis for PH function. Biochem Biophys Res Commun 1993; 195: 1145–51.PubMedCrossRefGoogle Scholar
  256. 256.
    Graeser D, Neubig RR. Compartmentation of receptors and G proteins in NG108-15 cells: lack of cross-talk in agonist binding among the alpha2 adrenergic, muscarinic and opiate receptors. Mol Pharmacol 1993; 43: 434–43.PubMedGoogle Scholar
  257. 257.
    Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, et al. An Intronless gene encodes a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 1987; 329: 75–9.PubMedCrossRefGoogle Scholar
  258. 258.
    Kobilka BK, MacGregor C, Daniel K, Kobilka TS, Caron MG, Lefkowitz RJ. Functional activity and regulation of human β2-adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 1987; 262: 15796–802.PubMedGoogle Scholar
  259. 259.
    Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ. cDNA for the human β2-adrenergic receptor. A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci 1987; 85: 46–50.CrossRefGoogle Scholar
  260. 260.
    Collins S, Bouvier MA, Bolanowski MA, Caron MG, Lefkowitz RJ. cAMP stimulates transcription of the β-adrenergic receptor gene in response to short term agonist exposure. Proc Natl Acad Sci 1989; 86: 4853–7.PubMedCrossRefGoogle Scholar
  261. 261.
    Palczewski K, Benovic JL. G-protein-coupled receptor kinases. Trends Biochem Sci 1991; 16: 387–91.PubMedCrossRefGoogle Scholar
  262. 262.
    Strader CD, Sigal IS, Blake AD, Cheung AH, Register RB, Rands E, Zemick BA, Candelore MR, Dixon RAF. The carboxyl terminus of the hamster beta adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Proc Natl Acad Sci 1987; 80: 1840–4.CrossRefGoogle Scholar
  263. 263.
    Stiles GL, Caron MG, Lefkowitz RJ. β-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 1984; 64: 661–743.PubMedGoogle Scholar
  264. 264.
    Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: Desensitization of β-adrenergic receptor function. FASEB J 1990; 4: 2881–9.PubMedGoogle Scholar
  265. 265.
    Collins S, Caron MG, Lefkowitz RJ. Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Ann Rev Physiol 1991; 53: 497–508.CrossRefGoogle Scholar
  266. 266.
    Collins S, Lohse MJ, O’Dowd B, Lefkowitz RJ. Structure and regulation of G protein-coupled receptors: the β2-adrenergic receptor as a model. Vitam Horm 1991; 46: 1–39.PubMedCrossRefGoogle Scholar
  267. 267.
    Muller FU, Bohler KR, Eschenhagen T, Schmitz W, Scholtz H. Isoprenaline induces gene transcription of the inhibitor G protein Giα2 in rat heart. Circ Res 1993; 72: 696–700.PubMedGoogle Scholar
  268. 268.
    Nishikawa M, Shirasaki H, Mak JCW, Barnes PJ. Isoproterenol-induced down regulation of and reduced gene transcription of pulmonary beta adrenoceptors. Am Rev Respir Dis 1993; 147: A274.Google Scholar
  269. 269.
    Milligan G, Green A. Agonist control of G-protein levels. Trends Pharmacol Sci 1991; 12: 207–9.PubMedCrossRefGoogle Scholar
  270. 270.
    Van der Heijden PJCM, Van Amsterdam JGC, Zaagsma J. Desensitization of smooth muscle and mast cell adrenoceptors in the airways of guinea pig. Eur J Respir Dis 1984; 65 (Suppl 135): 128–34.Google Scholar
  271. 271.
    Nerme V, Abrahamsson T, Vaquelin G. Chronic isoprotenerol administration causes altered beta-adrenoceptor-Gs-coupling in guinea-pig lung. J Pharmacol Exp Ther 1990; 252: 1341–6.PubMedGoogle Scholar
  272. 272.
    Russell FD, Kompa AR, Molenaar P, Summers RJ. Regulation of beta-adrenoceptors in the guinea-pig sinoatrial node. Naunyn-Schmied Arch Pharmacol 1994; 349: 463–72.CrossRefGoogle Scholar
  273. 273.
    Nishikawa M, Mak JCW, Shirasaki H, Harding SE, Barnes PJ. Long term exposure to norepinephrine results in down regulation and reduced mRNA expression of pulmonary β-adrenergic receptors. Am J Respir Cell Mol Biol 1994; 10: 91–9.PubMedGoogle Scholar
  274. 274.
    O’Connor BJ, Aikman SL, Barnes PJ. Tolerance to the non-bronchodilator effects of inhaled β2-agonists. New Engl J Med 1992; 327: 1204–8.PubMedCrossRefGoogle Scholar
  275. 275.
    Hekking PRM, Maesen F, Greefhorst A, Prins J, Tan Y. Efficacy and tolerability of inhaled formoterol compared with inhaled salbutamol over three months. In: Barnes PJ, Matthys H, editors. Formoterol a new generation beta2-agonist. Toronto: Hogrefe and Huber Publishers, 1990: 40–4.Google Scholar
  276. 276.
    Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Serine 133. Cell 1989; 59: 675–80.PubMedCrossRefGoogle Scholar
  277. 277.
    Montiminy MR, Gonzalez GA, Yamamoto KK. Regulation of cAMP-inducible genes by CREB. Trends Neurosci 1990; 13: 184–8.CrossRefGoogle Scholar
  278. 278.
    Kwok RPS, Lundblad JR, Chivia JC, Richards JP, Baechinger HP, Brennan RG, Roberts SGE, Green MG, Goodman RH. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994; 370: 223–6.PubMedCrossRefGoogle Scholar
  279. 279.
    Wang H, Nelson S, Ascoli M, Segaloff DL. The 5’-flanking region of the rat luteinizing hormone-chorionic gonadotropin receptor gene confers Leydig cell expression and negative regulation of gene transcription by 3’,5’-cyclic adenosine monophosphate. Mol Endocrinol 1992; 6: 320–6.PubMedCrossRefGoogle Scholar
  280. 280.
    Hummler E, Cole TJ, Blendy JA, Ganss R, Aguzzi A, Schmid W, Beerman F, Schuetz G. Targeted mutation of the CREB gene; compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci 1994; 91: 5647–51.PubMedCrossRefGoogle Scholar
  281. 281.
    Hadcock JR, Wang HY, Malbon CC. Agonist induced destabilization of beta adrenergic receptor mRNA. J Biol Chem 1989; 264: 19928–33.PubMedGoogle Scholar
  282. 282.
    Hamid QA, Mak JC, Sheppard MN, Corrin B, Venter JC, Barnes PJ. Localization of beta 2-adrenoceptor messenger RNA in human and rat lung using in situ hydridization: correlation with receptor autoradiography. Eur J Pharmacol 1991; 206: 133–8.PubMedCrossRefGoogle Scholar
  283. 283.
    Mano K, Akbarzadeh A, Townley RG. Effect of hydrocortisone on beta-adrenergic receptors in lung membranes. Life Sci 1979; 25: 1925–30.PubMedCrossRefGoogle Scholar
  284. 284.
    Salonen RO, Mattila MJ. A 24-hour glucocorticoid treatment increases the number of β-adrenoceptors in the rat lung. Acta Pharmacol Toxicol 1984; 55: 425–8.CrossRefGoogle Scholar
  285. 285.
    Helmreich EJM, Pfeuffer T. Regulation of signal transduction by β-adrenergic hormone receptors. Trends Pharmacol Sci 1985; 6: 438–43.CrossRefGoogle Scholar
  286. 286.
    Rinard GA, Jensen A, Puckett AM. Hydrocortisone and isoproterenol effects on trachealis cAMP and relaxation. J Appl Physiol 1983; 55: 1609–13.PubMedGoogle Scholar
  287. 287.
    Salonen RO. Concomitant glucocorticoid treatment prevents the development of β-adrenoceptor desensitization in the guinea pig lung. Acta Pharmacol Toxicol 1985; 57: 147–53.Google Scholar
  288. 288.
    Barnes PJ, Jacobs M, Roberts JM. Glucocorticoids preferentially increase fetal alveolar beta-adrenoceptors: Autoradiographic evidence. Pediat Res 1984; 18: 1191–4.PubMedCrossRefGoogle Scholar
  289. 289.
    Nabishah BM, Merican Z, Morat PB, Alias AK, Khalid BAK. Effects of steroid hormones pretreatment on isoprenaline-induced cyclic adenosine 3’,5’-monophosphate in rat lung. Gen Pharmacol 1990; 21: 935–8.PubMedCrossRefGoogle Scholar
  290. 290.
    Hadcock JR, Malbon CC. Regulation of β-adrenergic receptors by permissive hormones: glucocorticoids increase steady state levels of receptor mRNA. Proc Natl Acad Sci 1988; 85: 8415–9.PubMedCrossRefGoogle Scholar
  291. 291.
    Collins S, Caron MG, Lefkowitz RJ. β-adrenergic receptors in hamster smooth muscle are transcriptionally regulated by glucocorticoids. J Biol Chem 1988; 263: 9067–70.PubMedGoogle Scholar
  292. 292.
    Qian Y, Naline E, Karlsson JA, Raeburn D, Advenier C. Effect of rolipram and siguazadan on the human isolated bronchus and their interactions with isoprenaline and sodium nitroprusside. Br J Pharmacol 1993; 109: 774–8.PubMedGoogle Scholar
  293. 293.
    Stille CJ, Stiles GL. Methylxanthine treatment of smooth muscle cells differentially modulates adenylyl cyclase responsiveness. J Pharmacol Exp Ther 1991; 259: 925–31.PubMedGoogle Scholar
  294. 294.
    McCray PB. Spontaneous contractility of human fetal airway smooth muscle. Am J Respir Cell Mol Biol 1993; 8: 573–80.PubMedGoogle Scholar
  295. 295.
    Gatto C, Johnson MG, Seybold V, Kulik TJ, Locck JE, Johnson DE. Distribution and quantitative developmental changes in guinea-pig pulmonary beta adrenoceptors. J Appl Physiol 1984; 57: 1901–7.PubMedGoogle Scholar
  296. 296.
    Whitsett JA, Darovec-Beckerman C, Pollinger J, Moore JJ. Ontogeny of beta-adrenergic receptors in the rat lung: effects of hypothyroidism. Pediat Res 1982; 16: 381–7.PubMedCrossRefGoogle Scholar
  297. 297.
    Frossard N, Landry Y. Physiological approach of beta receptor coupling to adenylate cyclase in rat airways: ontogenical modifications and functional antagonism. J Pharmacol Exp Ther 1985; 233: 168–75.PubMedGoogle Scholar
  298. 298.
    Bretz U, Martin U, Ney UM. Drug effects on beta-adrenoceptor function in experimental animals. In: Morley J, editor. Beta-Adrenoceptors in Asthma. London: Academic, 1984: 227–38.Google Scholar
  299. 299.
    Takayanagi I, Satoh M, Kokuba N, Kato T. Beta-adrenoceptor density estimated in single cells from tracheal smooth muscle of guinea-pigs of different ages. Can J Physiol Pharmacol 1992; 70-458-61.Google Scholar
  300. 300.
    Sparrow MP, Mitchel HW. Contraction of smooth muscle of pig airway tissues from before birth to maturity. J Appl Physiol 1990; 68: 468–77.PubMedGoogle Scholar
  301. 301.
    Schramm GM, Chuang ST, Grundstein MM. Maturational changes in inositol l,4,5,triphosphate receptor binding in rabbit tracheal smooth muscle. Am J Physiol 1992; 263: L501–5.PubMedGoogle Scholar
  302. 302.
    Bai TR, Zhou D, Aubert JD, Lizee G, Hayashi S, Bondy GP. Expression of β2-adrenergic receptor mRNA in peripheral lung in asthma and in chronic obstructive lung disease. Am J Respir Cell Mol Biol 1993; 8: 325–33.PubMedGoogle Scholar
  303. 303.
    Engels F, Oosting RS, Nijkamp FP. Effects of Haemophilus influenzae on guinea pig tracheal beta-adrenergic receptor function: involvement of oxygen-centered radicals from pulmonary macrophages. J Pharmacol Exp Ther 1987; 241: 994–9.PubMedGoogle Scholar
  304. 304.
    Kramer K, Rademaker B, Rozendal WHM, Timmerman H, Bast A. Influence of lipid peroxidation on β-adrenoceptors. Febs Lett 1986; 198: 80–4.PubMedCrossRefGoogle Scholar
  305. 305.
    Kramer K, Doelman CJA, Timmerman H, Bast A. A balance between beta-adrenergic and muscarinic responses caused by hydrogen peroxide in rat airways in vitro. Biochem Biophys Res Commun 1987; 145: 357–62.PubMedCrossRefGoogle Scholar
  306. 306.
    Loesberg C, Henricks PAJ, Nijkamp FP. Inverse relationship between Superoxide anion production of guinea pig alveolar macrophages and tracheal β-adrenergic receptor function; influence of dietary polyunsaturated fatty acids. Int J Immunopharm 1989; 11: 165–71.CrossRefGoogle Scholar
  307. 307.
    Relhaus E, Innis M, MacIntyre N, Liggett SB. Mutation in the gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993; 8: 334–9.Google Scholar
  308. 308.
    Whicker SD, Armour C, Black JL. Responsiveness of bronchial smooth muscle from asthmatic patients to relaxant and contractile agonists. Pulm Pharmacol 1988; 1: 25–31.PubMedCrossRefGoogle Scholar
  309. 309.
    Sharma RK, Jeffery PK. Airway β-adrenoceptor number in cystic fibrosis and asthma. Clin Sci 1990; 78: 409–17.PubMedGoogle Scholar
  310. 310.
    Goldie RG, Paterson JW, Wale JL. Pharmacological responses of human and porcine lung parenchyma, bronchus and pulmonary artery. Br J Pharmacol 1982; 76: 515–21.PubMedGoogle Scholar
  311. 311.
    Goldie RG, Spina D, Henry PJ. In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, β-adrenoceptor agonists and theophylline. Br J Clin Pharmacol 1986; 22: 669–76.PubMedGoogle Scholar
  312. 312.
    Hamid QA, Mak JCW, Sheppard MN, Corrin B, Venter JC. Localization of beta 2-adrenoceptor messenger mRNA in human and rat lung using in situ hybridization: comparison with receptor autoradiography. Eur J Pharmacol 1991; 206: 113–38.CrossRefGoogle Scholar
  313. 313.
    Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S. G protein coupled genes as protooncogenes: constitutively activating mutation of the alpha 1B adrenoceptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci 1991; 88: 11354–8.PubMedCrossRefGoogle Scholar
  314. 314.
    Noveral JP, Grundstein MM. Adrenergic receptor mediated regulation of cultured rabbit airway smooth muscle cell proliferation. Am J Physiol 1994; 11: L291–9.Google Scholar
  315. 315.
    Tomlinson PR, Wison J, Stewart AG. Inhibition by salbutamol of the proliferation of human airway smooth muscle cells grown in culture. Br J Pharmacol 1994; 111: 641–7.PubMedGoogle Scholar
  316. 316.
    Crouch MF. Growth factor-induced cell division is paralleled by translocation of Giα to the cell nucleus. FASEB J 1991; 5: 200–6.PubMedGoogle Scholar
  317. 317.
    Cock SJ, McCormick F. Inhibition by cAMP of Ras-dependent Raf. Science 1993; 262: 1069–72.CrossRefGoogle Scholar
  318. 318.
    Wu J, Jelinek T, Wolfman A, Weber MJ, Sturgil TW. Inhibition of EGF-activated MAP kinase signaling pathway by adenosine 3’,5’-monophosphate. Science 1993; 262: 1065–9.PubMedCrossRefGoogle Scholar
  319. 319.
    Childs TJ, Mak AS. Smooth muscle mitogen-activated protein (MAP) kinase: purification and characterisation and the phosphorylation of caldesmon. Biochem J 1993; 296: 745–51.PubMedGoogle Scholar
  320. 320.
    Graves LM, Bornfeldt KE, Raines EW, Potts BC, McDonald SG, Ross R, et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein Kinase in human arterial smooth muscle cells. Proc Natl Acad Sci 1993; 90: 10300–4.PubMedCrossRefGoogle Scholar
  321. 321.
    Kribben A, Wieder ED, Li X, van Putten V, Granot Y, Schrier RW, Nemenoff RA. AVP-induced activation of MAP kinase in vascular smooth muscle cells is mediated via PKC. Am J Physiol 1993; 265: C939–45.PubMedGoogle Scholar
  322. 322.
    Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson EL. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 1993; 260: 315–9.PubMedCrossRefGoogle Scholar
  323. 323.
    Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature 1994; 369: 361–2.CrossRefGoogle Scholar
  324. 324.
    Henry PJ, Rigby PJ, MacKenzie JS, Goldie RG. Effect of respiratory tract infection on murine airway beta-adrenoceptor function, distribution and density. Br J Pharmacol 1991; 104: 914–21.PubMedGoogle Scholar
  325. 325.
    Chee MS, Satchwell SC, Preddie E, Weston KM, Barrel BG. Human cytomegalovirus encodes three G-protein coupled receptors. Nature 1990; 344: 774–7.PubMedCrossRefGoogle Scholar
  326. 326.
    Co MA, Gaulton GN, Tominaga A, Homey CJ, Fields BN, Green MI. Structural similarities between the mammalian beta-adrenergic and retrovirus type 3 receptors. Proc Natl Acad Sci 1985; 82: 5315–8.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Gary P. Anderson
    • 1
  1. 1.Asthma Research GroupCiba-Geigy PharmaceuticalsBaselSwitzerland

Personalised recommendations