Advertisement

Modulators of free radical activity in diabetes mellitus: Role of ascorbic acid

  • Alan J. Sinclair
  • Joseph Lunec
  • Alan J. Girling
  • Anthony H. Barnett
Part of the EXS book series (EXS, volume 62)

Summary

Free radical mechanisms are increasingly being implicated in the pathogenesis of tissue damage in diabetes. Various sources of free radicals may modulate oxidative stress in diabetes, including non-enzymatic glycosylation of proteins and monosaccharide autooxidation, polyol pathway activity, indirect production of free radicals through cell damage from other causes, and reduced antioxidant reserve. Ascorbic acid, which may be a principal modulator of free radical activity in diabetes, is shown to be consumed, presumably through free radical scavenging, thus preserving levels of other antioxidants such as glutathione.

Keywords

Ascorbic Acid Aldose Reductase Diene Conjugate Polyol Pathway Dehydroascorbic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, K., lizuka, S., Tada, Y., Oikawa, K., and Taniguchi, N. (1987) Increase in the glycosylated form of erythrocyte Cu-Zn-SOD in diabetes and close association of non-en- zymic glycosylation with enzyme activity. Biochim. Biophys. Acta. 924: 292–296.PubMedCrossRefGoogle Scholar
  2. Asayama, K., Kooy, N. W., and Burr, I. M. (1986) Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J. Lab. Qin. Med. 107: 459–464.Google Scholar
  3. Awadalla, R., El-Dessoukey, E. A., Doss, H., and Klalifa, K. (1978) Blood-reduced glutathione, serum caeruloplasmin and mineral changes in juvenile diabetes. Z. Er- nahrungsweiss. 17: 72–78.Google Scholar
  4. Banjerjee, A. (1982) Blood dehydroascorbic acid and diabetes mellitus in human beings. Ann. Clin. Biochem. 19: 65–70.Google Scholar
  5. Barnes, M. J. (1976) Function of ascorbic acid in collagen metabolism. Ann. N. Y. Acad. Sci. 258: 264–275.CrossRefGoogle Scholar
  6. Betteridge, D. J. (1989) Diabetes, Lipoprotein metabolism and atherosclerosis. Br. Med. Bull. 45: 285–311.PubMedGoogle Scholar
  7. Bradley, B., Prowse, S. J., Bauling, P., and Lafferty, K. J. (1986) Desferrioxamine treatment prevents chronic islet allograft damage. Diabetes 35: 550–555.PubMedCrossRefGoogle Scholar
  8. Brownlee, M., Cerami, A., and Vlassara, H. (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med 318: 1315–1321.PubMedCrossRefGoogle Scholar
  9. Caird, F. I. (1982) Complications of diabetes in old age, in: Advanced Geriatric Medicine. Evans, J. G. and Caird, F. I. eds. Pitman, London, pp. 3–9.Google Scholar
  10. Cerami, A. (1986) Ageing of proteins and nuclei acids. What is the role of glucose? Trends Biol. Sci. 11: 311–314.CrossRefGoogle Scholar
  11. Chari, S. W., Nath, N., and Rathi, A. B. (1984) Glutathione and its redox system in diabetic polymorphonuclear leucocytes. Am. J. Med. Sci. 287: 14–15.PubMedCrossRefGoogle Scholar
  12. Cogan, D. G. (1984) Aldose reductase and complications of diabetes. Ann. Intern. Med. 101: 82–91.PubMedGoogle Scholar
  13. Collier, A., Jackson, M., Dawkes, R. M., Bell, D., and Clarke, B. F. (1988) Reduced free radical activity detected by decreased diene conjugates in insulin-dependent diabetic patients. Diabetic Med. 5: 747–749.PubMedCrossRefGoogle Scholar
  14. Collier, A., Wilson, R., Bradley, H., Thomson, J. A., and Small, M. (1989) Free radical activity in type 2 diabetes. Diabetic Med. 7: 27–30.CrossRefGoogle Scholar
  15. Collier, A., and Small, M. (1991) The role of the polypol pathway in diabetes mellitus. Br. J. Hosp. Med. 45: 38–40.PubMedGoogle Scholar
  16. Cox B. D., and Butterfield, W. J. H. (1975) Vitamin C supplements and diabetic cutaneous capillary fragihty. Br. Med. J. 3: 205.PubMedCrossRefGoogle Scholar
  17. Crary, E. J., and McCarty, M. F. (1984) Potential clinical applications for high dose nutritional antioxidants. Med. Hypothesis. 13: 77–98.CrossRefGoogle Scholar
  18. Davis, K. A., Lee, W. Y. L., and Labbe, R. F. (1983) Energy dependent transport of ascorbic acid into lymphocytes. Fed Proc. 42: 2011.Google Scholar
  19. Dinarello, C. A. (1986) Interleuken-l:amino acid sequences, multiple biological activities and comparison with tumor necrosis factor (cachetin). Year Immunol. 2: 68–89.PubMedGoogle Scholar
  20. Greene, D. A., Lattimer, S. A., and Sima, A. A. F. (1987) Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic comphcations. N. Engl. J. Med. 316: 599–606.PubMedCrossRefGoogle Scholar
  21. Halliewll, B., and Gutteridge, J. M. C. (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet, I: 1396–1397.CrossRefGoogle Scholar
  22. Herman, J. B., Medalie, J. H., and Goldbourt, U. (1976) Diabetes, prediabetes and uricaemia. Diabetolagra 12: 47–52.CrossRefGoogle Scholar
  23. Hunt, J. v., and Wolff, S. P. (1991) Oxidative glycation and free radical production: a causal mechanism of diabetic complications. Free Rad. Res. Comms. 12/13: 115–123.CrossRefGoogle Scholar
  24. Ilhng, E. K., Gray, C. H., and Lawrence, R. D. (1951) Blood glutathione and non-glucose substances in diabetes. Biochem. J. 48: 637–640.Google Scholar
  25. Jones, A. F., Winkles, J. W., Jennings, P. E., Florkowski, C. M., Lunec, J., and Bamett, A. H. (1988) Serum antioxidant activity in diabetes meUitus. Diabetes Res. 7: 89–92.PubMedGoogle Scholar
  26. Karpen, C. W., Cataland, S., and O’Dorisio, T. M. (1985) Production of 12 HETE and vitamin E status in platelets from type 1 human diabetic subjects. Diabetes 34: 526–531.PubMedCrossRefGoogle Scholar
  27. Kirstein, M., Brett, J., Radoff, S., Ogawa, S., Stem, D., and Vlassara, H. (1990) Advanced protein glycosylation induces transendothehal human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and ageing. Proc. Natl. Acad. Sci. 87: 9010–9014.PubMedCrossRefGoogle Scholar
  28. Levine, M. (1986) New concepts in the biology and biochemistry of ascorbic acid. N. Eng. J. Med. 314: 892–902.CrossRefGoogle Scholar
  29. Makita, Z., Radoff, S., Rayiield, E. J., Yang, Z., Skolnik, E., Delaney, V., Friedman, E. A., Cerami, A., and Vlassara, H. Advanced glycosylation end products in patients with diabetic nephropathy. New Engl. J. Med. 325: 836–842.Google Scholar
  30. Malaisse, W. J. (1982) Alloxan toxicity to the pancreatic beta-cell: a new hypothesis. Biochem. Pharmacol. 31: 3527–3534.PubMedCrossRefGoogle Scholar
  31. Matkovics, B., Varga, S., and Seabo, L. (1982) The effect of diabetes on the activity of the peroxide metabohsing enzymes. Horm. Metab. Res. 14: 77–79.PubMedCrossRefGoogle Scholar
  32. Matsubara, T., and Ziff, M. (1986) Increased superoxide anion from human endothehal cells in response to cytokines, J. Immunol. 137: 3295–3298.PubMedGoogle Scholar
  33. McLennan, S., Yue, D. K., Fisher, E., Capogreco, C., Heffernan, S., Ross, G. R., and Turtle, J. R. (1988) Deficiency of ascorbic acid in experimental diabetes: relationship with collagen and polyol pathway abnormahties. Diabetes 37: 359–361.PubMedCrossRefGoogle Scholar
  34. Monnier, V. M., Kohn, R. R., and Cerami, A. (1984) Accelerated age-related browning of human collagen in diabetes melhtus. Proc. Natl. Acad. Sci. 81: 583–587.PubMedCrossRefGoogle Scholar
  35. Neale, R. J., Lim, H., Turner, J., and Freeman, J. R. (1988) The excretion of large vitamin C loads in young and elderly subjects: an ascorbic acid tolerance test. Age and Ageing 17: 35–41.PubMedCrossRefGoogle Scholar
  36. Nerup, J., Mandrup-Poulson, T., Molvig, J., Helqvist, S., Wogensen, L., and Egeberg, J. (1988) Mechanisms of pancreatic beta-cell destruction in type 1 diabetes. Diabetes Care 11: 16–23.PubMedGoogle Scholar
  37. Nishigaki, L, Hagihara, M., Tsunekawa, H., Maseki, M., and Yagi, K. (1981) Lipid peroxide levels of serum hpoprotein fractions of diabetic patients. Biochem. Med. 25: 373–378.PubMedCrossRefGoogle Scholar
  38. Nomikos, I. N., Prowse, S. J., Carotenuto, P., and Lafferty, K. J. (1986) Combined treatment with nicotinamide and desferrioxamine prevents islet aUograft destruction in NOD mice. Diabetes 35: 1302–1304.PubMedCrossRefGoogle Scholar
  39. Pincus, S. H., Whitcomb, E. A., and Dinarelio, C. A. (1986) Interaction of IL-1 and TPA in modulation of eosinophil function. J. Immunol. 137: 3509–3514.PubMedGoogle Scholar
  40. Procter, P. H., and Reynolds, E. S. (1984) Free radicals and disease in man. Physiol. Chem. Phys. 16: 175–195.Google Scholar
  41. Rikans, L. E. (1981) Effect of alloxan diabetes on rat ascorbic acid. Horm. Metab. Res. 13: 123.PubMedCrossRefGoogle Scholar
  42. Sacks, T., Moldow, C. F., Craddock, P. R., Bowers, T. K., and Jacob, H. S. (1978) Oxygen radicals mediate endothehal ceh damage by complement-stimulated granulocytes. J. Chn. Invest. 61: 1161–1167.CrossRefGoogle Scholar
  43. Salonen, J. T., Salonen, R., Ihanainen, M., Parviainen, M., Seppanen, R., Kantola, M., Seppanen, K., and Rauramaa, R. (1988) Blood pressure, dietary fats, and antioxidants. Am. J. Chn. Nutr. 48: 1226–1232.Google Scholar
  44. Sato, Y., Hotta, N., Sakamoto, N., Matsuoka, S., Ohishi, N., and Yagi, K. (1979) Lipid peroxide level in plasma of diabetic patients. Biochem. Med. 21: 104–107.PubMedCrossRefGoogle Scholar
  45. Seltzer, H. S. (1957) Blood glutathione in mild diabetes melUtus before treatment and during sulphonylurea-induced hypoglycaemia. Proc. Soc. Exp. Biol. Med. 95: 74–76.PubMedGoogle Scholar
  46. Selwign, A. P. (1983) The cardiovascular system and radiation. Lancet 2: 152–154.CrossRefGoogle Scholar
  47. Siperstein, M. D., Unger, R. H., and Madison, L. L. (1968) Studies of muscle capillary basement membranes in normal subjects, diabetic and pre-diabetic patients. J. Clin. Invest. 47: 1973–1999.PubMedCrossRefGoogle Scholar
  48. Som, S., Basu, S., Mukherjee, D., Deb S., Choudary, R., Mukherjee, S., Chatterjee, S. N., and Chatterjee, L B. (1981) Ascorbic acid metabolism in diabetes mellitus. Metabolism 30: 572–577.PubMedCrossRefGoogle Scholar
  49. Sinclair, A. J., Lunec, J., and Barnett, A. H. (1989). Diene conjugates and microangiopathy. Diabetic Med. 6: 458.PubMedCrossRefGoogle Scholar
  50. Sinclair, A. J., Girling, A. J., Gray, L., Le Guen, C., Lunec, J., and Barnett, A. H. (1991) Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia 34: 171–175.PubMedCrossRefGoogle Scholar
  51. Sinclair, A. J., Girling, A. J., Gray, L., Lunec, J., and Barnett, A. H. (1992) An investigation of the relationship between free radical activity and vitamin C metaboUsm in elderly diabetic subjects with retinopathy. Gerontology (in press).Google Scholar
  52. Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D. (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. 81: 3883–3887.PubMedCrossRefGoogle Scholar
  53. Stringer, M. D., Gorog, P. G., Freeman, A., and Kakkar, V. V. (1989) Lipid peroxides and atherosclerosis. Br. Med. J. 298: 281–284.CrossRefGoogle Scholar
  54. Thomas, G., Skrinska, V., Lucas, F. V., and Schumacher, O. P. (1985) Platelet glutathione and thromboxane synthesis in diabetes. Diabetes 34: 951–954.PubMedCrossRefGoogle Scholar
  55. Trabser, M. G., and Kayden, H. J. (1980) Low density lipoprotein receptor activity in human monocyte-derived macrophages and its relation to atheromatous lesions. Proc. Natl Acad. Sci. 77: 5466–5470.CrossRefGoogle Scholar
  56. Vlassara, H., Brownlee, M., Manogue, K., Dinarello, C., and Pasagian, A. (1988) Cachectin/ TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodelling. Science 204: 1546–1548.CrossRefGoogle Scholar
  57. Ward, P. A., Till, G. O., Kunkel, R., and Beauchamp, G. (1983) Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury. J. Clin. Invest. 72: 789–801.PubMedCrossRefGoogle Scholar
  58. Yamada, K., Nonaka, K., Hanafusa, T., Miyazaki, A., Toyoshima, H., and Tarui, S. (1982) Preventive and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insuHtis: an observation in nonobese diabetic (NOD) mice. Diabetes 31: 749–753.PubMedCrossRefGoogle Scholar
  59. Yew, M. S. (1983) Effect of streptozocin diabetes on tissue absorbic acid and dehydroascorbic acid. Horm. Metab. Res. 15: 158.PubMedCrossRefGoogle Scholar
  60. Yue, D. K., McLennan, S., Fischer, E., Heffernan, S., Capogreco, C., Ross, G. R., and Turtle, J. R. (1989) Ascorbic acid metabolism and the polyol pathway. Diabetes 38: 257–261.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • Alan J. Sinclair
    • 1
  • Joseph Lunec
    • 2
  • Alan J. Girling
    • 3
  • Anthony H. Barnett
    • 4
  1. 1.University Department of Geriatric MedicineUniversity of Wales College of MedicineCardiffUK
  2. 2.Wolfson LaboratoriesUniversity of BirminghamUK
  3. 3.Department of Mathematics and StatisticsUniversity of BirminghamUK
  4. 4.Department of MedicineUniversity of BirminghamUK

Personalised recommendations