Advertisement

Free radicals and aging of the skin

Chapter
Part of the EXS book series (EXS, volume 62)

Summary

Cutaneous aging is the result of genetically determined or intrinsic aging superimposed by degenerative changes due to actinic irradiation, also called photoaging. The manifestations of cutaneous aging, as it relates to the perception of age, is caused by ultraviolet light, in particular in those parts of the body exposed daily to solar radiation. Free radical generation in the skin by UV light and from other sources, such as cellular infiltrations or the xanthine oxidase reaction, may be detected by direct and indirect methods. The decrease in antioxidant enzymes and small molecular weight antioxidants such as glutathione, vitamine E and ubiquinone upon exposure to UV light is an indication that the pro-antioxidant balance can be overwhelmed by acute or chronic photo-oxidative stress. Antioxidant supplementation is therefore a means for prevention or at least retardation of premature cutaneous aging.

Keywords

Electron Spin Resonance Electron Spin Resonance Signal Active Oxygen Species Hairless Mouse Photoaged Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, H. S., Lenger, W. A., Gerguis, J., and Thornby, J. I. (1985) Relation of antioxidants and level of dietary lipid to epidermal lipid peroxidation and ultraviolet carcinogenesis. Cancer Res. 45: 6254–6259.PubMedGoogle Scholar
  2. Black, H. S. (1987) Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem. Photobiol. 46: 213–221.PubMedCrossRefGoogle Scholar
  3. Bors, W., Heller, W., Michel, C., and Saran, M. (1990) Radical chemistry of flavonoid antioxidants, in Antioxidants in Therapy and Preventive Medicine, pp. 165–170. Eds I. Emerit et al. Plenum Press, New York.CrossRefGoogle Scholar
  4. Carraro, C., and Pathak, M. A. (1988) Characterization of superoxide dismutase from mammalian skin epidermis. J. Invest. Dermatol. 90: 31–36.PubMedCrossRefGoogle Scholar
  5. Chedekel, M. R. (1982) Photochemistry and photobiology of epidermal melanins. Photochem. Photobiol. 35: 881–885.PubMedCrossRefGoogle Scholar
  6. Connor, M. J., and Wheeler, L. A. (1987) Depletion of cutaneous glutathione by ultraviolet radiation. Photochem. Photobiol. 46: 239–245.PubMedCrossRefGoogle Scholar
  7. Cunningham, M. L., Krinsky, N. I., Giovanazzi, S. M., and Peak, M. J. (1985) Superoxide anion is generated from cellular metabolites by solar radiation and its components. Free Rad. Biol. Med. 1: 381–386.CrossRefGoogle Scholar
  8. Danno, K., Horio, T., Takigawa, M., and Imamura, S. (1984) Role of oxygen intermediates in UV-induced epidermal injury. J. Invest. Dermatol. 83: 166–168.PubMedCrossRefGoogle Scholar
  9. Danno, K., and Horio, T. (1987) Sunburn cell: Factors involved in its formation. Photochem. Photobiol. 45: 683: 690.Google Scholar
  10. Emerit, I., Michelson, A. M., Martin, E., and Emerit, J. (1981) Perinuclear halo formation as an indication of phototoxic effects. Dermatologica 163: 295–299.PubMedCrossRefGoogle Scholar
  11. Foote, C. S. (1991) Definition of type I and type II photosensitized oxidation. Photochem. photobiol. 54: 659.PubMedCrossRefGoogle Scholar
  12. Fuchs, J., Huflejt, M. E., Rothfuss, L. M., Wilson, D. S., Carcamo, G., and Packer, L. (1989) Acute effects of near ultraviolet and visible light on the cutaneous antioxidant defense system. Photochem. Photobiol. 50: 739–744.PubMedCrossRefGoogle Scholar
  13. Fuchs, J., Huflejt, M. E., Rothfuss, L. M., Wilson, D. S., Carcamo, G., and Packer L. (1989) Impairment of enzymic and nonenzymic antioxidants in skin by UVB irradiation. J. Invest. Dermatol. 93: 767–773.Google Scholar
  14. Geremia, E. C., Corsano, C., Bonomo, R., Giardinelli, R., Vanella A., and Sichel, G. (1984) Eumelanins as free radical trap and superoxide dismutase activities in amphibia. Comp. Biochem. Physiol. 79 B: 67–69.Google Scholar
  15. Gilchrest, B. A., Szabo, G., Flynn, E., and Goldwyne, R. M. (1983) Chronologic and actinically induced aging in human skin. J. Invest. Dermatol. 80: 81–85.CrossRefGoogle Scholar
  16. Goodchild, N. T., and Kwock, L. (1981) Melanin: A possible cellular superoxide scavenger, in Oxygen and Oxygen Radicals in Chemistry and Biology, pp. 645–648. Eds M. A. J. Rodgers and E. L. Powers. Academic Press, New York.Google Scholar
  17. Horio, T., and Okamoto, H. (1987) Oxygen intermediates are involved in ultraviolet radiation-induced damage of Langerhans cells. J. Invest. Dermatol. 88: 699–702.PubMedCrossRefGoogle Scholar
  18. Kahl, R., Weinke, S., and Kappus, H. (1990) Comparison of antioxidant and prooxidant activity of various synthetic antioxidants, in: Antioxidants in Therapy and Preventive Medicine, pp. 283–290. Eds I. Emerit et al. Plenum Press, New York.CrossRefGoogle Scholar
  19. Kalyanaraman, B., Korytowski, W., Pilas, B., and Sarna, T. (1986) Photoinduced generation of hydrogen peroxide and hydroxyl radical in eumelanins. Photochem. Photobiol. 43s: 27.CrossRefGoogle Scholar
  20. Klain, G. J. (1989) Dermal penetration and systemic distribution of 14 C-labeled vitamin E in human skin grafted athymic nude mice. Intemat. J. Nutrí. Res. 59: 333–337.Google Scholar
  21. Khgman, L. H. (1989) Skin changes in photoaging: Characteristics, prevention and repair, in: Aging and the Skin, pp. 331–346. Eds A. K. Bahn and A. M. Kligman. Raven Press, New York.Google Scholar
  22. Koch, W. H., and Chedekel, M. R. (1987) Photochemistry and photobiology of melanogenic metabolites: Formation of free radicals. Photochem. Photobiol. 46: 229–238.PubMedCrossRefGoogle Scholar
  23. Koga, S., Nakano, M., and Tero-Kubota, S. (1991) Generation of superoxide during the enzymatic action of tyrosinase. Arch. Biochem. Biophys. 292: 570–575.CrossRefGoogle Scholar
  24. Korotowski, W., Pilas, B., Sarna, T., and Kalyanaraman, B. (1987) Photoinduced generation of hydrogen peroxide and hydroxyl radicals in melanins. Photochem. Photobiol. 45: 185–190.CrossRefGoogle Scholar
  25. Lee, P. C. C., and Rodgers M. A. J. (1987) Laser flash photokinetic studies of rose bengal sensitized photodynamic interactions of nucleotides and DNA. Photochem. Photobiol. 45: 79–96.PubMedCrossRefGoogle Scholar
  26. Maizuradse, V. N., Platonov, A. G., Gudz, T. L, Goncharenko, E. N., and Kudriashov, L U. B. (1987) Effect of ultraviolet rays on lipid peroxidation and various factors of its regulation in the rat skin. Biol. Nauki 5: 31–35.Google Scholar
  27. Margohs R. J., Sherwood, M., Maytum, D. J., Granstein, R. D., Weinstock M. A., Parrish, J. A., and Gange, R. W. (1989) Longwave UV radiation (UVA, 320–400 nm)-induced tan protects human skin against further UVA injury. J. Invest. Dermatol. 93: 713–718.CrossRefGoogle Scholar
  28. Mason, H. S., Ingram, D. J. E., and Allen, B. (1960) The free radical property of melanins. Arch. Biochem. Biophys. 86: 225–230.PubMedCrossRefGoogle Scholar
  29. Mason, H. S., Kalyanaraman, B., Trainer, B. E., and Ehng, T. E. (1980): A carbon-centered free radical intermediate in the prostaglandin synthetase oxidation of arachidonic acid: Spin trapping and oxygen uptake studies. J. Biol. Chem. 255: 5019–5020.PubMedGoogle Scholar
  30. Mathews-Roth, M. M. (1986) Carotinoids quench evolution of excited species in epidermis exposed to UVB (290–320 nm) Light. Photochem. Photobiol. 43: 91–93.PubMedCrossRefGoogle Scholar
  31. Meffert, H., Diezel, W., and Sonnichsen, N. (1976) Stable lipid peroxidation products in human skin: Detection, ultraviolet hght-induced increase, pathogenic importance. Experientia 32: 1397–1398.PubMedCrossRefGoogle Scholar
  32. Miyachi, Y., Imamura, S., and Niwa, Y. (1987) Decreased skin superoxide dismutase activity by a single exposure of ultraviolet radiation is reduced by hposomal superoxide dismutase pretreatment. J. Invest. Dermatol. 89: 111–112.PubMedCrossRefGoogle Scholar
  33. Moller, H., Potokar, M., and Wallat, S. (1988) Vitamin E as a cosmetic agent. Henkel Referate 24/Int. ed, pp. 91–95.Google Scholar
  34. Montagna, W., Kirchner, S., and Carlisle, K. (1989) Histology of sun-damaged human skin. J. Am. Acad. Dermatol. 21: 907–918.PubMedCrossRefGoogle Scholar
  35. Mugha, J. J., Tonnesen, M. G., Osborn, R. L., and Norris, D. R. (1986) Ineffective antioxidant defense in melanocytes. J. Invest. Dermatol. 86: 496. (Abstr.)Google Scholar
  36. Norrins, A. L. (1962) Free radical formation in the skin following exposure to ultraviolet light. J. Invest. Dermatol. 39: 445–448.Google Scholar
  37. Ogura, R., Sugiyama, M., Sakanashi, T., and Hidaka, T. (1987) Role of oxygen in lipid peroxide of skin exposed to ultraviolet light, in: The Biological Role of Reactive Oxygen Species in Skin, pp. 55–63. Eds O. Hayashi et al. Elsevier, New York.Google Scholar
  38. Pathak, M. A., and Stratton, K. (1968) Free radicals in human skin before and after exposure to hght. Arch. Biochem. Biophys. 123: 468–476.PubMedCrossRefGoogle Scholar
  39. Pathak, M. A., and Joshi, P. C. (1984) Production of active oxygen species by psoralens and ultraviolet radiation (320–400 nm). Biochem. Biophys. Acta 798: 115–128.PubMedCrossRefGoogle Scholar
  40. Pathak, M. A., and Carraro, C. (1987) Reactive oxygen species in cutaneous photosensitized reactions in porphyrias and PUVA photochemotherapy and in melanin pigmentation, in: The Biological Role of Reactive Oxygen Species in Skin, pp. 75–94. Eds O. Hayashi et al. Elsevier, New York.Google Scholar
  41. Pence, B. C., and Naylor, M. F. (1990) Effects of single-dose ultraviolet radiation on skin superoxide dismutase, catalase, and xanthine oxidase in hairless mice. J. Invest. Dermatol. 95: 213–216.PubMedCrossRefGoogle Scholar
  42. Persad, S., Menon, I. A., and Haberman, H. F. (1983) Comparison of the effects of UV-visible irradiation of melanins and melanin-hematoporphyrin complexes.from human black and red hair. Photochem. Photobiol. 73: 63–68.CrossRefGoogle Scholar
  43. Potapenko, A. Y., Abijev, G. A., Pistsov, M. Y. Roshchupkin, D. L, Vladimirov, Y. A., Pliquett, F., Ermolayev, A. V., Sarycheva, I. K., and Evstigneeva, R. P. (1984) PUVA- induced erythema and changes in mechanoelectrical properties of skin. Inhibition by tocopherols. Arch. Dermatol. Res. 276: 12–16.Google Scholar
  44. Punnonen, K., Jansen, C. T., Puntala, A., and Ahotupa, M. (1991) Effects of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes. J. Invest. Dermatol. 96: 255–259.PubMedCrossRefGoogle Scholar
  45. Ranadive, N. S., and Menon, I. A. (1986) Role of reactive oxygen species from melanins in photoinduced cutaneous inflammations. Pathol. Immunopathol. Res. 5: 118–139.PubMedCrossRefGoogle Scholar
  46. Reiners, J. J., Hale, M. A., and Cantu, A. R. (1988) Distribution of catalase and its modulation by 12–0-tetradecanoylphorbol-13-myristate in murine dermis and subpopula- tions of keratinocytes differing in their stages of differentiation. Carcinogenesis 9: 1259–1263.PubMedCrossRefGoogle Scholar
  47. Reiners, J. J., and Rupp, T. (1989) Conversion of xanthine dehydrogenase to xanthine oxidase occurs during keratinozyte differentiation: Modulation by 12–0-tetradecanoylphorbol-13- acetate. J. Invest. Dermatol. 93: 132–135.PubMedCrossRefGoogle Scholar
  48. Rosario, R., Mark, G. J., Parrish, J. A. and Martin, C. (1979) Histological changes produced in skin by equally erythemogenic doses of UVA, UVB, UVC and UVA with psoralens. Brit. J. Dermatol. 101: 299–308.CrossRefGoogle Scholar
  49. Roshchupkin, D. I., Pistsov, M. Y., and Potapenko, A. Y. (1979) Inhibition of ultraviolet light-induced erythema by antioxidants. Arch. Dermatol. Res. 266: 91–94.PubMedCrossRefGoogle Scholar
  50. Sarna, T., and Sealy, R. C. (1984): Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin. Photochem. Photobiol. 39: 69–74.Google Scholar
  51. Schallreuter, K. U., Pittelkow, M. R., and Wood, J. M. (1986) Free radical reduction by thioredoxin reductase at the surface of the epidermis. J. Invest. Dermatol. 87: 728–732.PubMedCrossRefGoogle Scholar
  52. Schallreuter, K. U., and Wood, J. M. (1989) Free radical reduction in the human epidermis. Free Rad. Biol. Med. 6: 519–532.PubMedCrossRefGoogle Scholar
  53. Sealy, R. C., Sarna, T., Wanner, E. J., and Reszka, K. (1984) Photosensitization of melanin: an electron spin resonance study of sensitized radical production and oxygen consumption. Photochem. Photobiol. 40: 453–460.PubMedCrossRefGoogle Scholar
  54. Tanaka, T. (1979) Skin damage and its prevention from lipoperoxide. Vitamins 53: 577–586.Google Scholar
  55. Tanaka, T., and Hayakawa, R. (1986) Lipid peroxides in cosmetic products and their effect to irritate the skin. J. Clin. Biochem. Nutr. 1: 200–206.CrossRefGoogle Scholar
  56. Tezuka, T., and Takahashi, M. (1987) Stratum corneum membrane proteins in newborn rat as scavengers of lipid peroxide, in: The Biological Role of Reactive Oxygen Species in Skin, pp. 125–134. Eds O. Hayaishi et al. Elsevier, New York.Google Scholar
  57. Tissie, G., Latour, E., Coquelet, C., and Bonne, C. (1990) Singlet oxygen-induced damage to rat lenses in vitro. Protection by anisyldithiothione, in: Antioxidants in Therapy and Preventive Medicine, pp. 529–532. Eds I. Emerit et al. Plenum Press, New York.CrossRefGoogle Scholar
  58. Till, G. O., Guilds, L. S., Mahrougui, M., Friedl, H. P., Trentz, O., and Ward, P. A. (1989) Role of Xanthine Oxidase in Thermal Injury of Skin. Am. J. Pathol. 135: 195–202.PubMedGoogle Scholar
  59. Tomita, Y., and Tagami, H. (1987) The scavenging and filter effect of melanin against superoxide anion produced by photoirradiation, in: The Biological Role of Reactive Oxygen Species in Skin, pp. 95–100. Eds O. Hayashi et al. Elsevier, New York.Google Scholar
  60. Weedon, D., Searle, J., and Kerr, J. F. (1979) Apoptosis. Its nature and implications for dermatopathology. Am. J. Dermatopathol. 1: 133–144.PubMedCrossRefGoogle Scholar
  61. Wilgram, G. F., Kidd, R. L., Krawezyk, W. S., and Cole, P. L. (1970) Sunburn effect on keratinosomes. Arch. Dermatol. 101: 505–519.PubMedCrossRefGoogle Scholar
  62. Wood, J. M., and Schallreuter, K. U. (1991) Studies on the reactions of human tyrosinase, superoxide anion, hydrogen peroxide and thiols. Biochim. Biophys. Acta 1074: 378–385.PubMedCrossRefGoogle Scholar
  63. Yagi, K. (1987) Lipid peroxides in the skin, in: The Biological Role of Reactive Oxygen Species in Skin, pp. 109–116. Eds O. Hayashi et al. Elsevier, New York.Google Scholar
  64. Yohn, J. J., Norris, D. A., Yrastorza, D. G., Buno, I. J., Leff, J. A., Hake, S. S., and Repine, J. E. (1991) Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. J. Invest. Dermatol. 97: 405–409.Google Scholar
  65. Yoshino, K., Matsuo, I., and Ohkido, M. (1981) Antioxidation eflfects of human epidermal keratin on skin surface lipid peroxides. Jpn. J. Dermatol. 91: 1175–1179.Google Scholar
  66. Young, A. R. (1987) The sunburn cell. Photodermatology 4: 127–134.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  1. 1.Free Radical Research Group, Centre de Recherches Biomédicales des CordeliersUniversity of Paris VIParisFrance

Personalised recommendations