Active oxygen species, articular inflammation and cartilage damage

  • Y. Henrotin
  • G. Deby-Dupont
  • C. Deby
  • P. Franchimont
  • I. Emerit
Part of the EXS book series (EXS, volume 62)


Rheumatoid arthritis and osteoarthritis are age-related diseases, in which degenerative changes (arthrosis) and superimposed inflammatory reactions (arthritis) lead to progressive destruction of the joints. Active oxygen species derived from various sources play a role in this process, which may be influenced by appropriate treatment with antioxidants and free radical scavengers.


Rheumatoid Arthritis Superoxide Dismutase Articular Cartilage Hyaluronic Acid Synovial Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. E., Outhwaite, J., Morris, C. J., and Blake, D. R. (1987) Xanthine oxidoreductase is present in human synovium. Ann. Rheum. Dis. 46: 843–45.PubMedCrossRefGoogle Scholar
  2. Auclair, C., Gouyette, A., Levy, A., and Emerit, L (1990) Clastogenic inosine nucleotides as components of the chromosome breakage factor in scleroderma. Arch. Biochem. Biophys. 278: 238–244.PubMedCrossRefGoogle Scholar
  3. Babior, B. M. (1978) Oxygen-dependent microbial killing by phagocytes. N. Engl. J. Med. 298: 203–209.Google Scholar
  4. Baker, M. S., Feigan, J., and Lowther, D. A. (1988) Chondrocyte anti-oxydant defences: the role of catalase and glutathione peroxidase in protection against H2O2dependent inhibition of proteoglycan biosynthesis. J. Rheumatol. 15: 4: 670–677.PubMedGoogle Scholar
  5. Baker, M. S., Feigan, J., and Lowther, D. (1989) The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate deshydrogenase. J. Rheumatol. 16: 7–14.PubMedGoogle Scholar
  6. Bassleer, C., Gysen, P., Foidart, J. M., Bassleer, R., and Franchimont, P. (1986) Human chondrocytes in tridimensional culture. In Vitro 22: 115–120.Google Scholar
  7. Bates, E. J., Harper, G. S., Lowther, D. A., et al. (1984) Effect of oxygen derived reactive species on cartilage proteoglycan-hyaluronate aggregates. Biochem. Int. 8: 629–637.PubMedGoogle Scholar
  8. Bates, E. J., Johnson, C. C., and Lowther, D. A. (1985) Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochem. Biophys. Acta 838: 221–228.PubMedCrossRefGoogle Scholar
  9. Biemond, P., Swaak, A. J., and Köster, J. F. (1984) Protective factors against hydrogen peroxide in rheumatoid arthritis synovial fluid. Arthr. Rheum. 27: 760–765.CrossRefGoogle Scholar
  10. Biemond, P., Swaak, A. J., Elijk, H. G., (1986) Intraarticular ferritin bound iron in rheumatoid arthritis. Arthr. Rheum. 29: 1187–1193.CrossRefGoogle Scholar
  11. Blake, D. R., Gallagher, P. J., Potter, A. R., (1984) The effect of synovial iron on the progression of rheumatoid disease: an histologic assessment of patient with early rheumatoid synoviotis. Arth. Rheum. 27: 495–501.CrossRefGoogle Scholar
  12. Blake, D. R., Winyard, P., and Lunec, J. (1985) Cerebral and ocular toxicity induced by desferrioxamine. Quart. J. Med. 56: 345–355.PubMedGoogle Scholar
  13. Blake, D. R., Unsworth, J., Outhwaite, J. M., Morris, C. J., Merry, P., Kido, B. L., Ballard, R., Gray, L., and Lunec, J. (1989) Hypoxic-reperfusion injury in the inflamed human joint. Lancet Feb 11: 290–293.Google Scholar
  14. Bomalaski, J. S., Hirata, F., and Clark, M. (1986) Aspirin inhibits phospholipase c. Biochem. Biophys. Res. Commun. 139: 115–121.PubMedCrossRefGoogle Scholar
  15. Broom, N. D., and Silyn-Roberts, H. C. (1990) Collagen-collagen versus proteoglycan interactions in the determination of cartilage strength. Arthr. Rheum. 33: 1512–1517.CrossRefGoogle Scholar
  16. Buettner, G. R., and Chamulitrat, W. (1990) The catalytic activity of iron in synovial fluid as monitored by the ascorbate free radical. Free Radical Biol. Med. 8: 55–56.CrossRefGoogle Scholar
  17. Burkhardt, H., Schwingel M., Meninger, H., McCartney, H. W., and Tschesche, H. (1986) Oxygen radicals as effectors of cartilage destruction. Direct degradative effect on matrix components and indirect action via activation of latent collagenase from polymorphonuclear leukocytes. Arth. Rheum. 29, 3: 379–387.CrossRefGoogle Scholar
  18. Camus, J. P., Crouzet, J., Benichou, Ch., and Lièvre, J. A. (1974) Cent cas de polyarthrite rhumatoide traités par la D-penicillamine. Ann. Int. Med. 125: 9–18.Google Scholar
  19. Camus, J. P., Emerit, I., Michelson, A. M., Prier, A., Koeger, A. C., and Merlet, C. (1980) Superoxyde dismutase et polyarthrite rhumatoide. Rev. Rhumat. 47: 489–492.Google Scholar
  20. Castor, C. W., Ragsdale, C. G., Cabrai, A. R., Smith, E. M., and Aaron B. P. (1987) Anabolic and catabolic responses of human articular cells to growth factors. J. Rheumatol. (suppl. 14) 14: 67–69.PubMedGoogle Scholar
  21. Cooke, D., Saura, S., Uno, R., and Scuddamore, A. (1991) Interaction of immunoglobulins and chondrocytes. J. Rheumatol, (suppl. 27) 18: 114–116.Google Scholar
  22. Curran, S. F., Amusoro, M. A., Goldstein, B. D., et al. (1984) Degradation of soluble collagen by ozone or hydroxyl radicals. FEBS Lett. 176: 155–160.PubMedCrossRefGoogle Scholar
  23. Davis, P., Johnston, C., Bertouch, J., et al.. (1987) Depressed superoxide radical generation by neutrophils from patients with rheumatoid arthritis and neutropenia: correlation with neutrophil reactive IgG. Ann. Rheum. Dis. 46: 51–54.PubMedCrossRefGoogle Scholar
  24. Dean, D. D. (1991) Proteinase-mediated cartilage degradation in osteoarthritis. Sem. Arthr. Rheum. 20, 6 (suppl. 2): 2–11.CrossRefGoogle Scholar
  25. Dingle, J. T. (1991) Cartilage maintenance in osteoarthritis: interaction of cytokines, NSAID and prostaglandins in articular cartilage damage and repair. J. Rheumatol, (suppl. 28) 18: 30–37.Google Scholar
  26. Emerit, I., Feingold, J., Camus, J. P., and Housset, E. (1974) Etude chromosomique des maladies du collagène. Ann. Génét. 17: 251–256.PubMedGoogle Scholar
  27. Emerit, I. (1982) Chromosome breakage factors: origin and possible significance. Progr. Mutat. Res. 4: 61–74.Google Scholar
  28. Emerit, I., Kech, M., Levy, A., Feingold, J., and Michelson, A. M. (1982) Activated oxygen species at the origin of chromosome breakage and sister-chromatid exchanges. Mutat. Res. 103: 165–177.PubMedCrossRefGoogle Scholar
  29. Emerit, L, Khan, S. H., and Cerutti, P. (1985) Treatment of lymphocyte cultures with a hypoxanthine- xanthine oxidase system induces the formation of transferable clastogenic material. Free Rad. Biol. Med. 1: 51–57.CrossRefGoogle Scholar
  30. Emerit, L (1986) Oxygen-derived free radicals and DNA damage in autoimmune diseases, in: Free Radicals, Aging and Degenerative Diseases, pp. 327–334. Ed. J. E. Johnson. Alan R. Liss Inc., New York.Google Scholar
  31. Emerit, L (1988) Increased oxyradical formation in connective tissue disease, in: Cellular Antioxidant Defense Mechanisms, pp. 112–121. Ed. C. K. Chow. CRC Press, Boca Raton.Google Scholar
  32. Emerit, I., Levy, A., and Camus, J. P. (1988) Monocyte-derived clastogenic factor in rheumatoid arthritis. Free Rad. Biol. Med. 6: 245–250.CrossRefGoogle Scholar
  33. Emerit, L, Levy, A., and Khan, S. H. (1990) Superoxide generation by clastogenic factors, in: Free Radicals, Lipoproteins, and Membrane Lipids, pp. 99–104. Eds Crastes de Paulet et al. Plenum Press, New York.Google Scholar
  34. Emerit, I., Khan, S. H., and Esterbauer, H. (1991) Hydroxynonenal, a component of clastogenic factors? Free Rad. Biol. Med. 10: 371–377.Google Scholar
  35. Eyre, D. R., Apon, S., Wu, J. J., Ericsson, L. H., et al. (1987) Collagen type IX: evidence for covalent hnkages to type II collagen in cartilage. FEBS Lett. 220: 337–341.PubMedCrossRefGoogle Scholar
  36. Flohé, L. (1988) Superoxide dismutase for therapeutic use: Clinical experience, dead ends and hopes. Mol. Cell. Biochem. 84: 123–131.PubMedCrossRefGoogle Scholar
  37. Franchimont, P., Bassleer, C., and Henrotin, Y. (1989) Effects of hormones and drugs on cartilage repair. J. Rheumatol. 18: 5–9.Google Scholar
  38. Franchimont, P., Bassleer, C., Henrotin, Y., Gysen, P., and Bassleer, R. (1989) Effects of human and salmon calcitonin on human articular chondrocytes cultivated in clusters. J. Clin. Endocr. Met. 69, 2: 259–266.CrossRefGoogle Scholar
  39. Gammer, W., and Broback L. G. (1984) Chnical comparison of orgotein and methylpred- nisolone acetate in the treatment of osteoarthrosis of the knee joint. Scand. J. Rheumatol. 13: 108–112.PubMedCrossRefGoogle Scholar
  40. Oilman, S. C. (1987) Activation of rabbit articular chondrocytes by recombinant human cytokines. J. Rheumatol. 14: 1002–7.Google Scholar
  41. Goldstein, I. M., Roos, D., Weissman, G., et al. (1976) Influence of corticosteroids on human polymorphonuclear leukocyte function in vitro. Inflammation 1: 301–315.CrossRefGoogle Scholar
  42. Granger, D. N., Hollworth, M. E., and Parks, D. A. (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol. Scand. 548: 47–63.Google Scholar
  43. Greenwald, R. A., and Moak, S. A. (1986) Degradation of the hyaluronic acid by polymorphonuclear leukocytes. Inflammation 10: 15–30.PubMedCrossRefGoogle Scholar
  44. Greenwald, R. A. (1991) Oxygen radicals, inflammation and arthritis: pathological considerations and implications for treatment. Sem. Arthr. Rheum. 20, 4: 219–240.CrossRefGoogle Scholar
  45. Gubjornsson, B., Zak, A., Niklasson, F., and Hallgren, R. (1991) Hypoxanthine, xanthine and urate in synovial fluid from patients with inflammatory arthritis. Ann. Rheum. Dis. 50: 669–672.CrossRefGoogle Scholar
  46. Gutteridge, J. C. (1987) Bleomycin detectable iron in knee joint synovial fluid arthritis patients and its relationship to the extracellular oxidant activities of ceruloplasmin, transferrin and lactoferrin. Biochem. J. 245: 415–421.PubMedGoogle Scholar
  47. Halliwell, B., Gutteridge, J. M. C., and Blake, D. C. (1985) Metal ions and oxygen radical reactions in human inflammatory joint disease. Phil. Trans. R. Soc. Lond. B 311: 659–671.CrossRefGoogle Scholar
  48. Hammerman, D. (1989) The biology of osteoarthritis. N. Engl. J. Med. 320: 1322–30.CrossRefGoogle Scholar
  49. Heineguard, D., and Oldberg, A. (1989) Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 3: 2042–2051.Google Scholar
  50. Henrotin, Y., Bassleer, C., Reginster, J. Y., Bassleer, R., and Franchimont, P. (1989) Effects of Etodolac on human chrondrocytes cultivated in three dimensional culture. Clin. Rheumatol, (suppl. 1) 8: 36–42.PubMedCrossRefGoogle Scholar
  51. Henrotin, Y., Deby-Dupont, G., Deby, C., Debruin, M., Lamy, M., and Franchimont, P. (1992) Production of active oxygen species by isolated human chondrocytes. British J. Rheum, (in press).Google Scholar
  52. Hill, J., Birdha, D. (1990) Failure of selenium ACE to improve osteoarthritis. Br. J. Rheumatol. 29: 211–213.PubMedCrossRefGoogle Scholar
  53. Huber, W., and Saifer, M. G. P. (1977) Orgotein, the drug version of bovine Cu-Zn superoxide dismutase, in: Superoxide and Superoxide Dismutase, pp. 517–536. Eds A. M. Michelson et al. Academic Press, London.Google Scholar
  54. Humad, S., Zariing, M., Clapper, M., and Skosey, J. L. (1986) Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Rad. Res. Commun. 5: 101–106.CrossRefGoogle Scholar
  55. Hurst, N. P., Bessac, B., and Nuki, G. (1984) Monocyte superoxide anion production in rheumatoid arthritis: preliminary evidence for enhanced rates of superoxide production by monocytes from patients receiving penicillanine, sodium aurothionalate and corticosteroids. Ann. Rheum. Dis. 43: 27–33.CrossRefGoogle Scholar
  56. Igari, T., Kaneda, H., Horiuchi, S., and Ono, S. A. (1982) A remarkable increase of superoxide dismutase activity in synovial fluid of patients with rheumatoid arthritis. CHn. Orthop. 162: 282–287.Google Scholar
  57. Imadaya, A., Terasawa, K., Tosa, R., et al. (1988) Erythrocyte antioxydant enzymes are reduced in patients with rheumatoid arthritis. J. Rheumatol. 15: 1968–1974.Google Scholar
  58. Iwasaki, Y., Matsubara, T., and Hirohata, K. (1988) A mechanism of cartilage destruction in immunologically-mediated inflammation: increased superoxide anion release from chondrocytes in response to interleukin-1 and interferons. Orthop. Trans. 12: 438–444.Google Scholar
  59. Kaplan, H. I., Edelson, H., Korchak, H. I., Given, W., Abramson, S., and Weissman, G. (1984) Effects of non-steroidal anti-inflammatory agents on human neutrophil functions in vitro and in vivo. Biochem. Pharmacol. 33: 371–378.PubMedCrossRefGoogle Scholar
  60. Kempson, G. E. (1980) The mechanical properties of articular cartilage, in: The Joints in Synovial Fluid, pp. 215–290. Ed. L. Sokoloff. Pitman, London.Google Scholar
  61. Keston, A. S., and Brandt, R. (1965) The fluorimetric analysis of ultramicro quantities of hydrogen peroxide. Analyt. Biochem. 11: 1–5.PubMedCrossRefGoogle Scholar
  62. Khan, S. H., and Emerit, I. (1985) Lipid peroxidation product and clastogenic material in culture media of human leukocytes exposed to the tumor promoter phorbol myristate acetate. Free Rad. Biol. Med. 1: 443–449.CrossRefGoogle Scholar
  63. Klebanoff, S. J., and Clark, R. A. (1978) The Neutrophil: Function and Chemical Disorders. North-Holland, Amsterdam.Google Scholar
  64. Kong-oo Goh, and Jacox, R. F. (1982) Chromosomes in rheumatoid arthritis. Ann. Rheum. Dis. 41: 644–646.PubMedCrossRefGoogle Scholar
  65. Kowanko, I. C., Bates, E. J., and Ferrante, A. (1989) Mechanisms of human neutrophil mediated cartilage damage in vitro: the role of lysosomial enzymes, hydrogen peroxide and hypochlorous acid. Immunol. Cell. Biol. 67: 321–329.PubMedCrossRefGoogle Scholar
  66. Lipsky, D. E. (1989) Mechanisms of action of slow acting drugs in rheumatoid arthritis. CHn. Exp. Rheumatol. 7/S-3: 177–180.Google Scholar
  67. Lund-Olesen, K., and Menander, K. B. (1974) Orgotein, a new anti-inflammatory metallo- protein drug: preliminary evaluation of clinical efficacy and safety in degenerative joint disease. Curr. Ther. Res. 16: 706–717.PubMedGoogle Scholar
  68. Martel-Pelletier, J., Zafarullah, M., Kodama, S., and Pelletier, J. P. (1991) In vitro effects of interleukin-1 on the synthesis of metallo-proteases, TIMP, plasminogen activators and inhibitors in human articular cartilage. J. Rheumatol, (suppl. 27) 18: 80–84.Google Scholar
  69. Matsubara, T., Chin, T., and Hirohata, K. (1988) Mechanism of cartilage destruction in immunologically mediated inflammation increase superoxide anion release from chondrocytes in response to interleukin-1 and interferon gamma. Arthr. Rheum. 31, 4: 533.CrossRefGoogle Scholar
  70. McCord, J. M., and Fridovich, I. (1969) Superoxide dismutase, an enzymic function for erythrocuprein (Hemocuprein). J. Biol. Chem. 244: 6049–6055.PubMedGoogle Scholar
  71. McCord, J. M. (1974) Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185: 529–531.PubMedCrossRefGoogle Scholar
  72. McCord, J. M. (1985) Oxygen-derived free radicals in post-ischemic tissue injury. New Engl. J. Med. 312: 159–161.PubMedCrossRefGoogle Scholar
  73. McNeil, J. D., Wiebkino, W., Betts, W. H., et al. (1985) Depolymerisation products of hyaluronic acid after exposure to oxygen derived free radicals. Ann. Rheum. Dis. 44: 780–789.PubMedCrossRefGoogle Scholar
  74. Mcllwain, H., Silverfield, J. C., Cheatum, D. E.,, et al.. (1989) Intra-articular orgotein in osteoarthritis of the knee: a placebo controlled efficacy, safety and dosage comparison. Am. J. Med. 87: 295–300.CrossRefGoogle Scholar
  75. Meltzer, H. M., and Myskja, A. (1985) Selenium supplementation to rheumatics. Who responds? Abstracts of the Proceedings “Metabohsms of trace elements related to human disease”, p. 36. Symposium Loen, Norway.Google Scholar
  76. Menander-Huber, K. (1980) Double-blind controlled chnical trials in man with bovine copper-zinc superoxide dismutase (Orgotein); in: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase. pp. 408–423. Eds W. H. Bannister, and J. V. Bannister. Elsevier, New York.Google Scholar
  77. Michelson, A. M., Puget, K., and Jadot, G. (1986) Antiinflammatory activity of superoxide dismutases: comparison of enzymes from different sources in different models in rats: mechanism of action. Free Rad. Res. Commun. 2: 43–56.CrossRefGoogle Scholar
  78. Minta, J. O., and William, M. P. (1986) Interactions of antirheumatic drugs with the superoxide generation system of activated human polymorphonuclear leukocytes. J. Rheumatol. 13: 498–504.PubMedGoogle Scholar
  79. Monboisse, J. C., Braquet, P., and Borel, J. P. (1984) Oxygen-free radicals as mediators of collagen breakage. Agents Actions 15: 1–2.CrossRefGoogle Scholar
  80. Monboisse, J. C., Gardes-Albert, M., Randoux, A., et al.. (1988) Collagen degradation by superoxide anion in pulse and gamma radiolysis. Biochem. Biophys. Acta 965: 29–35.PubMedCrossRefGoogle Scholar
  81. Montecucco, C., Mazcone, A., Pasotti, D., and Fratino, P. (1990): Effect of piroxicam therapy on granulocyte function elastase concentration in peripheral blood and synovial fluid in rheumatoid arthritis patients. Inflammation 26: 152–158.Google Scholar
  82. Moskowitz, R. W., Reese, J. H., Young, G. R. et al. (1980) The effects of Rumalon, a glycosaminoglycan peptide complex in a partial menisectomy model of osteoarthritis in rabbits. J. Rheumatol. 18, 2: 205–209.Google Scholar
  83. Munthe, E., Aaseth, J., and Jellun, E. (1986) Trace elements and rheumatoid arthritis. Acta Pharmacol. Toxicol. 59: 365–373.CrossRefGoogle Scholar
  84. Myint, P., Deeble, D. J., and Beaumont, P. C. (1987) The reactivity of various free radicals with hyaluronic acid: a steady state and pulse radiolysis studies. Biochem. Biophys. Acta 925: 194–199.PubMedCrossRefGoogle Scholar
  85. Nurcombe, H. L., Buchnall, R. C., and Edwards, S. W. (1991) Neutrophils isolated from the synovial fluid of patients rheumatoid arthritis: priming and activation in vivo. Ann. Rheum. Dis. 50: 147–153.PubMedCrossRefGoogle Scholar
  86. Nurcombe, H. L., Bucknall, R. C., and Edwards, S. W. (1991) Activation of the neutrophil myeloperoxidase -H202 system by synovial fluid isolated from patients with rheumatoid arthritis. Ann. Rheum. Dis. 50: 237–242.PubMedCrossRefGoogle Scholar
  87. O’Dell, J. R., Lemley-Guillespie, S., Palmer, W. R., Weaver, A. L., Moore, G. F., and Klassen L. W. (1991) Serum selenium concentrations in rheumatoid arthritis. Ann. Rheum. Dis. 50: 376–78.PubMedCrossRefGoogle Scholar
  88. Palmer, D. G., Hogg, N., and Revell, P. A. (1986) Lymphocytes, polymorphonuclear leukocytes, macrophages and platelets in synovium involved by rheumatoid arthritis. A study with mono-clonal antibodies. Pathology 18: 431–437.Google Scholar
  89. Pasquier, C., Masch, P. S., Raichvar, G. D., et al. (1984) Manganese containing superoxide dismutase deficiency in polymorphonuclear leukocytes of adults with rheumatoid arthritis. Inflammation 8: 27–32.PubMedCrossRefGoogle Scholar
  90. Pruzanski, W., Vadas, P., Stefanski, E., and Urowitz, M. B. (1985) Phospholipase A2 activity in sera and synovial fluid in rheumatoid arthritis and osteoarthritis. Its possible role as a proinflammatory enzyme. J. Rheumatol. 12: 211–217.Google Scholar
  91. Rister, M., and Bauermeister, K. (1982) Superoxidedismutase and superoxide radical release in rheumatoid arthritis. Klin. Wochenschr. 60: 561–565.PubMedCrossRefGoogle Scholar
  92. Roberts, C. R., Mort, J. S., and Roughley, P. J. (1987) Treatment of cartilage proteoglycan aggregate with hydrogen peroxide. Biochem. J. 247: 349–357.PubMedGoogle Scholar
  93. Roberts, C. R., Roughley, P. J., and Mort, J. S. (1989) Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Protein fragmentation, amino acid modification and hyaluronic acid cleavage. Biochem. J. 259: 805–811.Google Scholar
  94. Robertson, F. M., Liesch, J. B., Tiku, K., and Tiku, M. L. (1988) Production of reactive oxygen intermediates by rabbit articular chondrocytes. Arthritis and Rheum, (suppl. 4) 31: 984.Google Scholar
  95. Saari, H. (1991) Oxygen derived free radicals and synovial fluid hyaluronate. Ann. Rheum. Dis. 50: 389–392.PubMedCrossRefGoogle Scholar
  96. Schalwijk, J., Vandenberg, W. B., Vandeputte, L., and Joosten, L. A. B. (1985) Hydrogen peroxide suppresses the proteoglycan synthesis of intact articular cartilage. J. Rheumatol. 12: 205–210.Google Scholar
  97. Schmidt, K. H., and Bayer, W. (1990) Efficacy of vitamin E as a drug in inflammatory joint disease, in: Antioxidants in Therapy and Preventive Medicine, pp. 147–150. Eds I. Emerit et al. Plenum Press, New York.CrossRefGoogle Scholar
  98. Scudder, P., Stocks, J., and Dormandy, T. L. (1976) The relationship between erythrocyte superoxide dismutase activity and erythrocyte copper levels in normal subjects and in patients with rheumatoid arthritis. Clin. Chim. Acta 69: 397–403.PubMedCrossRefGoogle Scholar
  99. Shapiro, S. M., Campbell, E. J., Sewior, R. M., and Welgus, H. G. (1991) Proteinase secreted by human mononuclear phagocytes. J. Rheumatol, (suppl. 27) 18: 95–98.Google Scholar
  100. Shimnei, M., Masuda, K., Kikuchi, T., Shimomura, Y., and Okada, Y. (1991) Production of cytokines by chondrocytes and its role in proteoglycan degradation. J. Rheumatol, (suppl. 27) 18: 89–91.Google Scholar
  101. Situnayake, R. D., Thurnham, D. I., Kootathep, S., Chirico, S., Lunec, J., Davis, M., and McCornkey, B. (1991) Chain breaking antioxidant status in rheumatoid arthritis: clinical and laboratory correlates. Ann. Rheum. Dis. 50: 81–86.PubMedCrossRefGoogle Scholar
  102. Sorenson, J. R. (1976) Copper chelates as possible active forms of the antiarthritic agents. J. Med. Chem. 19: 135–148.PubMedCrossRefGoogle Scholar
  103. Steinberg, J. J., and Sledge, C. B. (1991) Chondrocyte mediated cartilage: regulation by prostaglandin E2, cyclic AMP and interferon a. J. Rheumatol, (suppl. 27) 18: 63–65.Google Scholar
  104. Tarp, v., Overvad, K., Hansen, J. C., and Thorling, E. B. (1985) Low selenium level in severe rheumatoid arthritis. Scand. J. Rheumatol. 14: 97–101.PubMedCrossRefGoogle Scholar
  105. Tiku, M. L., Liesch, J. B., and Robertson, F. M. (1988) Chondrocytes produce oxygen radicals after treatment with concanavalin A, gamma interferon or tumor necrosis factor. Arthr. Rheumat. 131, 4 (suppl.): 569.Google Scholar
  106. Tiku, M. L., Liesch, J. B. and Robertson, F. M. (1990) Production of hydrogen peroxide by rabbit articular chondrocytes. J. Immunol. 145: 690–696.PubMedGoogle Scholar
  107. Towle, C. A., Trice, M. E., Ollivierre, F., et al. (1987) Regulation of cartilage remodeling by IL-1: evidence for autocrine synthesis of IL-1 by chondrocytes. J. Rheumatol, (suppl. 14) 14: 11–13.PubMedGoogle Scholar
  108. Vaille, A., Jadot, G., and Elizagaray, A. (1990) Antiinflammatory activity of various superoxide dismutases on polyarthritis in the Lewis rat. Biochem. Pharmacol. 39: 247–255.PubMedCrossRefGoogle Scholar
  109. Vincent, G., Croquette, M. F., Houvenagel, E., and Lelore, E. (1986) Anomalies chromo- somiques au cours de la polyarthrite rhumatoide. Taux de cassures et recherche du facteur cassant. Rev. Rhumat. 11: 625–630.Google Scholar
  110. Vincent, F., Brun, H., Clain, E., Ronot, X., and Adolphe, M. (1989) Effects of oxygen-free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J. Cell. Phys. 141: 262–266.CrossRefGoogle Scholar
  111. Weiss, S. J., Rustagi, P. K., and Buglio, A. F. (1978) Human granulocyte generation of hydroxyl radical. J. Exp. Med. 147: 316–322.PubMedCrossRefGoogle Scholar
  112. Yaron, I., Meyer, F. A., Dayer, J. M., et al.. (1989) Some recombinant human cytokines stimulate glycosaminoglycan synthesis in human synovial fibroblast cultures and inhibit it in human articular cartilage cultures. Arthr. Rheum. 32: 173–180.CrossRefGoogle Scholar
  113. Yoshikawa, T., Tanaka, H., and Kondo, M. (1985) The increase of lipid peroxidation in rat adjuvant arthritis and its inhibition by superoxide dismutase. Biochem. Med. 33: 320–325.PubMedCrossRefGoogle Scholar
  114. Younes, M., and Weser, U. (1977) Superoxide dismutase activity of copper-penicillamine: possible involvement of Cu(I) stabilized sulphur radical. Biochem. Biophys. Res. Commun. 78: 1247–1251.PubMedCrossRefGoogle Scholar
  115. Yousef, A., and Baroun D. (1983) Leukocyte superoxide dismutase in rheumatoid arthritis. Ann. Rheum. Dis. 42: 558–562.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • Y. Henrotin
    • 1
  • G. Deby-Dupont
    • 2
  • C. Deby
    • 2
  • P. Franchimont
    • 1
  • I. Emerit
    • 3
  1. 1.Laboratory of RadioimmunoassayUniversity Sart-TilmanLiègeBelgium
  2. 2.Centre interdisciplinaire de Biochimie normale et pathologique de l’OxygèneUniversity Sart-TilmanLiègeBelgium
  3. 3.Centre Biomédical des Cordeliers Free Radical Research GroupUniversity ParisParisFrance

Personalised recommendations