Advertisement

Oxidative stress in diabetic retina

  • Michel Doly
  • Marie-Thérèse Droy-Lefaix
  • Pierre Braquet
Part of the EXS book series (EXS, volume 62)

Summary

The authors describe the alterations usually associated with diabetic retinopathy. They concern the classical thickening of the basal membrane of retinal capillaries and the associated modification of retinal vessel permeability. These alterations correspond to the blood-retinal barrier disruption. The authors then discuss the participation of oxygenated free radicals in the pathogenesis of diabetic retinopathy. They report several experimental studies establishing such a participation and finally describe their own results obtained on a model of retinas isolated from alloxan-induced diabetic rats.

After one month of evolution, the electroretinograms (ERG) recorded on isolated retinas from diabetic rats had an amplitude about 20% lower than the controls, whereas after two months of diabetes, this decrease was about 60%. Under these conditons, the authors tested the protective properties of Ginkgo biloba extract (EGb 761) on their model. They observed that in EGb-treated animals (100 mg/kg/day), the ERG had a significantly (p < 0.001) greater amplitude than untreated animals after two months of diabetes evolution.

In conclusion, the authors discuss the possible utilization of a free radical scavenger, such as EGb 761, in the prevention of the retinal impairment in diabetes.

Keywords

Diabetic Retinopathy Free Radical Scavenger Aldose Reductase Diabetes Evolution Ginkgo Biloba Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. E., and Sperling, L. (1971) Lipids of ocular tissues. VII Positional distribution of the fatty acids in the phospholipids of bovine retina rod outer segments. Arch. Biochem. Biophys. 144: 673–677.PubMedCrossRefGoogle Scholar
  2. Bazan, H. E. P., Careaga, M. M., and Bazan, N. G. (1985) Decreased utilization of [2-H] glycerol in phospholipid and neutral glyceride biosynthesis in the retina of streptozotocin- diabetic rats. Neurochem. Path. 3: 109.CrossRefGoogle Scholar
  3. Blair, N. P., Tso, M. O. M., and Dodge, J. T. (1984) Pathologie studies of the blood-retinal barrier in the spontaneously diabetic BB rat. Invest. Ophthalmol. 25, 302–331.Google Scholar
  4. Bloodworth, J. H. B., and Moditor, D. L. (1985) Ultrastructural aspect of human and canine diabetic retinopathy. Invest. Ophthalmol. 4: 1037–1048.Google Scholar
  5. Braquet, P., Doly, M., Bonhomme, B., and Meyniel, G. (1982) Peroxydation hpidique et activité électrique de la rétine isolée: effect protecteur de l’extrait de Ginkgo biloba, in: Compte-rendus des Journées Internationales du Groupe Polyphénols. Toulouse (France), 29–30 September.Google Scholar
  6. Braquet, P., Touqui, L., Shen, T. Y., and Vargaftig, B. B. (1987) Perspectives in platelet-acti- vating factor research. Pharmacol. Rev. 39: 97–145.PubMedGoogle Scholar
  7. Careaga, M. M., and Bazan, H. E. P. (1981) The rat retina is a useful in vivo model to study membrane hpid synthesis. Rates of biosynthesis of neutral glycerides and phosphohpids. Neurochem. Res. 6: 1169–1178.Google Scholar
  8. Cohen, G. (1984) Oxy-radical production in alloxan-induced diabetes: an example of an in vivo metal-catalyzed Haber-Weiss reaction, in: Free Radicals in Molecular Biology. Armstrong D., Sohal, R. S., Cuther, R. G., Slater, T. F. eds. Raven Press, New York, pp. 307–316.Google Scholar
  9. Cunha-Vaz, J., De Abreu, J. R. F., Campos, A. J., and Figo, G. H. (1975) Early breakdown of the blood-retinal barrier in diabetes. Br. J. Ophthalmol. 59: 649–656.PubMedCrossRefGoogle Scholar
  10. Doly, M., Isabelle, D. B., Vincent, P., Gaillard, G., and Meyniel, G. (1980) Mechanism of the formation of X-ray indticed phosphenes. I. Electrophysiological investigations. Rad. Res. 82: 93–105.Google Scholar
  11. Doly, M., Braquet, P., Bonhomme, B., and Meyniel, G. (1984) Effects of lipid peroxidation on the isolated rat retina. Ophthalmic Res. 16: 292–296.PubMedCrossRefGoogle Scholar
  12. Doly, M., Braquet, P., Droy, M. T., Bonhomme, B., and Vennat, J. C. (1985) Effects des radicaux hbres oxygénés sur l’activité électrophysiologique de la rètina isolée de rat. J. Fr. Ophthalmol. 8: 273–277.Google Scholar
  13. Doly, M., Droy-Lefaix, M. T., Bonhomme, B., and Braquet, P. (1986) Effets de l’extrait de Ginkgo biloba sur l’électrophysiologie de la rétine isolée de rat diabétique. Presse Méd. 15: 1480–1483.PubMedGoogle Scholar
  14. Doly, M., Braquet, P., Droy, M. T., (1988) Alteration of electrophysiological function of isolated retina from alloxan-induced diabetic rats: effect of treatment with Ginkgo biloba extract. Neurochem. Pathol. 8: 15–26.Google Scholar
  15. Famsworth, C. C., and Dratz, E. A. (1976) Oxidative damage of retinal rod outer segment membranes and the role of Vitamin E. Biochim. Biophys. Acta 443: 556–570.CrossRefGoogle Scholar
  16. Ishibashi, T., Tanaka, K., and Taniguchi, Y. (1980) Disruption of blood-retinal barrier in experimental diabetic rats: an electron microscopic study. Exp. Eye Res. 30: 401–410.PubMedCrossRefGoogle Scholar
  17. Kagan, V. E., Shvedova, A. A., Novikov, K. N., and Koslov, Y. P. (1973) Lipid-induced free radical oxidation of membrane hpids in photoreceptors of frog retina. Biochim. Biophys. Acta 330: 76–79.PubMedCrossRefGoogle Scholar
  18. Murata, R., Nishida, T., Eto, S., and Mukai, N. (1981) Lipid peroxidation in diabetic rat retina. Metab. Pediat. Ophthalmol. 5: 83–87.Google Scholar
  19. Nishimura, C., and Kuriyama, K. (1985a) Alteration of hpid peroxide and endogenous antioxidant contents in retina of streptozotocin-induced diabetic rats: effect of Vitamin A administration. Japan J. Pharmacol. 37: 365–372.CrossRefGoogle Scholar
  20. Nishimura, C., and Kuriyama, K. (1985b) Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J. Neurochem. 45: 448–455.PubMedCrossRefGoogle Scholar
  21. Novikov, K. N., Kagan, V. E., Shvedova, A. A., and Kozlov, Y. P. (1975) Protein-lipid interactions on peroxide oxidation of hpids in the photoreceptor membrane. Biofizika 20: 1039–1042.PubMedGoogle Scholar
  22. Oakley, B., and Pinto, L. H. (1981) Ca modulations of membrane sodium conductance in rod outer segments, in: Cuttent Topics in Membrane and Transport. Muller, ed. Academic Press Inc., New York. p. 405.Google Scholar
  23. Palmberg, P. F. (1977) Diabetic Retinopathy. Diabetes 26: 703–711.PubMedGoogle Scholar
  24. Papachristodoulou, D., and Heath, H. (1977) Ultrastructural alterations during the development of retinopathy in sucrose-fed and streptozotocin-diabetic rats. Exp. Eye Res. 25: 371–384.PubMedCrossRefGoogle Scholar
  25. Shvedova, A. A., Sidorov, A. S., Novikov, K. N. et al. (1979) Lipid peroxidation and electric activity of the retina. Vision Res. 19: 49–55.PubMedCrossRefGoogle Scholar
  26. Tamai, A., and Tanaka, K. (1973) The ERG of the streptozotocin-diabetic albino rat. Foha Ophthalmol. Japan. 24: 847–850.Google Scholar
  27. Tanaka, T. (1981) Effects of various agents on the ERG of the streptozotocin-diabetic rat. Foha Ophthalmol. Japan. 72: 1470–1480.Google Scholar
  28. Tanigushi, Y., and Nomura, T. (1968) Fine structure of retinal blood vessels in human diabetics. Acta Soc. Opihthalmol. Japan. 72: 1165–1178.Google Scholar
  29. Tomita, T., and Ynagida, T. (1981) Origins of the ERG waves. Visions Res. 21: 1703–1707.CrossRefGoogle Scholar
  30. Yonemura, D., Aoki, T., and Tsuzuki, K. (1962) Electroretinogram in diabetic retinopathy. Arch. Ophthal. 68: 49–54.CrossRefGoogle Scholar
  31. Yonemura, D. (1977) An electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application. Acta Soc. Ophthalmol. Japan. 81: 1632–1665.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • Michel Doly
    • 1
  • Marie-Thérèse Droy-Lefaix
    • 2
  • Pierre Braquet
    • 2
  1. 1.Facultés de Médecine et de PharmacieLaboratoire de Biophysique (Inserm U. 71)Clermont-Ferrand CedexFrance
  2. 2.IHB/IPSEN Laboratoires de RechercheLe Plessis-RobinsonFrance

Personalised recommendations