Free Radicals and Aging pp 280-298

Part of the EXS book series (EXS, volume 62)

Carotenoids in the retina — A review of their possible role in preventing or limiting damage caused by light and oxygen

  • Wolfgang Schalch

Summary

Two of the circa 600 naturally occurring carotenoids, zeaxanthin and lutein, the major carotenoids of maize and melon respectively, are the constituents of the macula lutea, the yellow spot in the macula, the central part of the retina in primates and humans. Of the circa ten carotenoids found in the blood these two are specifically concentrated in this area, which is responsible for sharp and detailed vision. This paper reviews the ideas that this concentration of dietary carotenoids in the macula is not accidental, but that their presence may prevent or limit damage due to their physicochemical properties and their capability to quench oxygen free radicals and singlet oxygen, which are generated in the retina as a consequence of the simultaneous presence of light and oxygen. Additionally, in vitro and in vivo animal experiments are reviewed as well as observational and epidemiological data in humans. These show that there is enough circumstantial evidence for a protective role of carotenoids in the retina to justify further research. Some emphasis will be put on age-related macular degeneration (AMD), a multifactorial degenerative retinal disease for which the exposure to light and thus photochemical damage has been suggested as one of the etiological factors. Recent attempts at nutritional intervention in this condition will also be reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andley, U. P. (1987) Photodamage to the eye. Photochem. Photobiol. 46: 1057–1066.PubMedCrossRefGoogle Scholar
  2. Appleby, S. J., and Muntz, W. R. A. (1979) Occlusable yellow corneas in tetraodontidae. J. Exp. Biol. 83: 249–259.Google Scholar
  3. Arden, G., and Barker, F. M. (1991) Canthaxanthin and the eye - a critical ocular toxicological assessment. J. Toxicol.-Cut. & Ocular. Toxicol. 10 (1&2): 115–155.Google Scholar
  4. Benolken, R. M., Maude, M. B., and Anderson, R. E. (1976) Photopigments of the lateral eye of limulus. J. Comp. Physiol. 107: 339–347.CrossRefGoogle Scholar
  5. Blumenkranz, M. S., Russell, S. R., Robey, M. G., Kott-Blumenkranz, R., and Penneys, N. (1986) Risk factors in age-related maculopathy complicated by choroidal neovascularization. Ophthalmology. 96: 552–558.Google Scholar
  6. Bone, R. A., Landmm, J. T., and Tarsis, S. L. (1985) Preliminary identification of the human macular pigment. Vision Res. 25: 1531–1535.PubMedCrossRefGoogle Scholar
  7. Bone, R. Landrum, J. T., Fernandez, L., and Tarsis, S. L. (1988) Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest. Ophthalmol. Vis. Sci. 29: 843–849.PubMedGoogle Scholar
  8. Bomstein, M. H. (1973) Color vision and color naming; a psychophysiological hypothesis of cultural difference. Psychol. Bull. 80: 257–285.CrossRefGoogle Scholar
  9. Bressler, N. M., Bressler, S. B., and Fine, S. L. (1988) Age-related macular degeneration - a major review. Survey Ophthalmol. 32: 375–412.CrossRefGoogle Scholar
  10. Burton, G. W., and Ingold, K. U. (1984) Beta-carotene - an unusual type of hpid antioxidant. Science. 224: 569–573.PubMedCrossRefGoogle Scholar
  11. Cains, A., Bone, R. A., Landrum, J. T., and Zamor, J. (1991) Determination of the absolute configuration of the macular pigment carotenoids. Invest. Ophthalmol. Vis. Sci. (Suppl.) 32:1009.Google Scholar
  12. Conn, P. F., Schalch, W., and Truscott, T. G. (1991) The singlet oxygen - carotenoid interaction. J. Photochem. Photobiol. B: Biol., 11: 41–47.CrossRefGoogle Scholar
  13. Crary, E. J. (1987) Antioxidant treatment of macular degeneration of the aging and macular edema in diabetic retinopathy. South. Med. J. 80: 38.Google Scholar
  14. Daicker, B., Schiedt, K., Adnet, J. J., and Bermond, P. (1987) Canthaxanthin retinopathy - an investigation by light and electron microscopy and physicochemical analysis. Graefe’s Arch. Chn. Exp. Ophthalmol. 225: 189–197.CrossRefGoogle Scholar
  15. Dayhaw-Barker, P. (1986) Ocular photosensitation. Photochem. Photobiol. 46: 1051–1055.CrossRefGoogle Scholar
  16. Deisenhofer, J., and Michel, H. (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas virdis. Chemica Scripta 29: 205–220.Google Scholar
  17. Delmelle, M. (1977) Retinal damage by hght: possible implication of singlet oxygen. Biophys. Struct. Mechanism 3: 195–198.CrossRefGoogle Scholar
  18. Ferris, F. L. (1983) Senile macular degeneration: review of epidemiologic features. Am. J. Epidemiol. 118: 132–151.PubMedGoogle Scholar
  19. Foote, C. S. (1979) Quenching of singlet oxygen, in: Singlet Oxygen. Wasserman, M. M. & Murray, R. W., eds. Academic Press, New York, pp. 139–171.Google Scholar
  20. Frank, R. N. (1989) Macular degeneration. JAMA 261: 767–768.CrossRefGoogle Scholar
  21. Gerster, H. (1991) Review: Antioxidant protection of the ageing macula. Age and Ageing 20: 60–69.PubMedCrossRefGoogle Scholar
  22. Goldberg, J., Flowerdew G., Smith E., Brody J. A., and Tso, M. O. M. (1988) Factors associated with age-related macular degeneration - Analysis of data from NHANES I. Am. J. Epidemiol. 128: 700–711.PubMedGoogle Scholar
  23. Gross, J. (1987) Pigments in Fruits. Academic Press, New York, pp. 87–182.Google Scholar
  24. Gross, J. (1991) Pigments in Vegetables. Van Nostrand, New York, pp. 85–128.Google Scholar
  25. Gume, D. H., Tso, M.O.M., Edward, D. P., and Ripps, H. (1991) Antiretinal antibodies in serum of patients with age-related macular degeneration. Ophthalmology 98: 602–607.Google Scholar
  26. Haegerstrom-Portnoy, G. (1988) Short-wavelength-sensitive-cone sensitivity loss with aging: a protective role for macular pigment? J. Opt. Soc. Am. Ser. A. 5: 2140–2144.CrossRefGoogle Scholar
  27. Ham, W. T., Mueller, H. A., Ruflfolo, J. J., Millen, J. E., Cleary, S. F., Guerry, R. K., and Guerry, D. (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr. Eye Res. 3: 165–174.PubMedCrossRefGoogle Scholar
  28. Ham, W. T., and Mueller, H. A. (1989) The photopathology and nature of blue hght and near-UV retinal lesions produced by lasers and other optical sources, in: Laser Applications in Medicine and Biology. Wolbarsht, M. L., ed. Plenum, New York, pp. 210.Google Scholar
  29. Handehnan, G. J., and Dratz, E. A. (1986) The role of antioxidants in the retina and retinal pigment epithelium and the nature of prooxidant-induced damage. Adv. Free Radical Biol. & Med. 2: 1–89.Google Scholar
  30. Handehnan, G. J., Draz, E. A., Reay, C. C., and van Kuijk, F. J. G. (1988) Carotenoids in the human macula and whole retina. Invest. Ophthalmol. Vis. Sci. 29: 850–855.Google Scholar
  31. Handehnan, G. J., Snodderly, D. M., Krinski, N. I., Russett, M. D., and Adler, A. J. (1991a) Biological control of primate macular pigment. Invest. Opththalmol. Vis. Sci. 32: 257–267.Google Scholar
  32. Handelman, G. J., van Kuijk, F. J. G. M., Chatterjee, A., and Krinsky, N. I. (1991b) Characterization of products formed during the autoxidation of beta-carotene. Free Radical Biology & Medicine 10: 427–437.CrossRefGoogle Scholar
  33. Hankinson, S. E., Stampfer, M. J., Seddon, J. M., Colditz, G. A., Rosner, B., Speizer, F. E., and Willett, W. C. (1991) A prospective study of vitamin intake and cataracts. 24th Annual Meeting of the Soc. for Epidemiologic Research, June 11–14, Buffalo, N.Y.Google Scholar
  34. Heckenlively, J. R., Yoser, S. L., and Pearlman, J. T. (1989) Treatment Trial of beta- carotene and vitamin E for Retinitis Pigmentosa (RP). Invest. Ophthalmol. Vis. Sci. (Suppl.) 30: 305.Google Scholar
  35. Hess, H., and Zigler, J. S. (1991) Retina-lens interaction in genesis of cataracts in RCS rats and prevention by dietary supplementation with beta-carotene and vitamin E. Invest. Ophthalmol. Vis. Sci. (Suppl.) 32: 1100.Google Scholar
  36. Hiramitsu, T., and Armstrong, D. (1991) Preventive effect of antioxidants on lipid peroxidation in the retina. Ophthalmic Res. 23: 196–203.PubMedCrossRefGoogle Scholar
  37. Isler, O. Ed. (1971) Carotenoids. Birkhauser, Basel.Google Scholar
  38. Jaffe, G. J., and Wood, I. S. (1988) Retinal phototoxicity from the operating microscope: a protective effect by the fovea. Arch. Ophthalmol. 106: 445–446.PubMedCrossRefGoogle Scholar
  39. Jane, S. D., and Bowmaker, J. K. (1988) Tetrachromatic colour vision in the duck: microspectrophotometry of visual pigments and oil droplets. J. Comp. Physiol. Ser. A 162: 225–235.CrossRefGoogle Scholar
  40. Katz, M. L., Stone, W. L., and Dratz, E. A. (1978) Fluorescent pigment accumulation in retinal pigment epithelium of antioxidant-deficient rats. Invest. Ophthalmol. Vis. Sci. 17: 1049–1058.PubMedGoogle Scholar
  41. Kennedy, T. A., and Liebler, D. C. (1991) Peroxyl radical oxidation of beta-carotene: formation of beta-carotene epoxides. Chem. Res. Toxicol. 4: 290–295.PubMedCrossRefGoogle Scholar
  42. Kini, M. M., Leibowitz, H. M., Colton, T., and Nickerson, R. J. (1978) Prevalence of senile cataract, diabetic retinopathy, senile macular degeneration and open-angle glaucoma in the Framingham Eye Study. Am. J. Ophthalmol. 85: 28–34.PubMedGoogle Scholar
  43. Kirschfeld, K. (1982) Carotenoid pigments: their possible role in protecting against photoox- idation in eyes and photoceceptor cells. Proc. R. Soc. Lond. (B) 216: 71–85.CrossRefGoogle Scholar
  44. Klein, B. E., and Klein, R. (1982) Cataracts and macular degeneration in older Americans. Arch. Opthalmol. 100: 571–573.CrossRefGoogle Scholar
  45. Krebs, W., and Krebs, J. (1991) Primate retina and choroid - Atlas of fine structure in man and monkey. Springer-Verlag, New York, pp. 2–8.CrossRefGoogle Scholar
  46. Krinsky, N. I. (1968) The protective function of carotenoid pigments. Photophysiology 3: 123–195.Google Scholar
  47. Krinsky, N. I. (1979) Carotenoid protection against oxidation. Pure & Appl. Chem. 51: 649–660.CrossRefGoogle Scholar
  48. Krinsky, N. I. and Deneke, S. M. (1982) Interaction of oxygen and oxy-radicals with carotenoids. J. Natl. Cancer Inst. 69: 205–210.PubMedGoogle Scholar
  49. Krinsky, N. I., Russett, M. D., Handelman, G. J., and Snodderly, D. M. (1990) Structural and geometrical isomers of carotenoid in human plasma. J. Nutr. 120: 1654–1662.PubMedGoogle Scholar
  50. Kurashige, M., Okimasu, E., Inoue, M., and Utsumi, K. (1990) Inhibition of oxidative injury of biologic membranes by Astaxanthin. Physiol. Chem. Phys. & Med. NMR 22: 27–38.Google Scholar
  51. Lawwill, T., Crockett, S., and Currier, G. (1977) Retinal damage secondary to chronic light exposure - thresholds and mechanisms. Docum. Ophthalmol. 44: 379–402.CrossRefGoogle Scholar
  52. Lermann, S. (1983) An experimental and clinical evaluation of lens transparency and aging. J. Geront. 38: 293–301.Google Scholar
  53. Liles, M. R., Newsome, D. A., and Oliver, P. D, (1991) Antioxidant enzymes in the aging human retinal pigment epithelium. Arch. Ophthalmol. 109: 1285–1288.PubMedCrossRefGoogle Scholar
  54. Liu, I. Y., White, L., and LaCroix, A. Z. (1989) The association of age-related macular degeneration and lens opacities in the aged. Am. J. Pub. Health 79: 765–769.CrossRefGoogle Scholar
  55. Malinow, M. R., Feeney-Burns, L., Peterson, L. H., Klein, M. L., and Neuringer, M. (1980) Diet-related macular anomalies in monkeys. Invest. Opthalmol. Vis. Sci. 19: 857–863.Google Scholar
  56. Mares-Perlman, J. A., Klein, B. E. K., Klein, R., Ritter, C., Linton, K. L. P., and Luby, M. H. (1991) Relationship between diet and cataract prevalence. Invest. Ophthalmol. Vis. Sci. (Suppl.) 32: 723.Google Scholar
  57. Marshall, J. (1985) Radiation and the ageing eye. Ophthal. Physiol. Opt. 5: 241–263.CrossRefGoogle Scholar
  58. Di Mascio, P., Kaiser, S., and Sies, H. (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–538.PubMedCrossRefGoogle Scholar
  59. Minke, B., and Kirschfeld, K. (1978) Microspectrophotometric evidence for two photointer- convertible states of visual pigment in the barnacle lateral eye. J. General. Physiol. 71: 37–45.CrossRefGoogle Scholar
  60. Mordi, R. C., Walton, J. C., Burton, G. W., Hughes, L., Ingold, K. U., and Lindsay, D. A. (1991) Exploratory study of beta-carotene autoxidation. Tetrahedron Letters 32: 4203–4206.CrossRefGoogle Scholar
  61. Muntz, W. R. A. (1972) Inert absorbing and reflecting pigments. Sensory Physiology 7: 529–565.Google Scholar
  62. Nussbaum, J. J., Pruett, R. C., and Delori, F. C. (1981) Historic perspectives - Macular yellow pigment - The first 200 years. Retina 1: 296–310.PubMedCrossRefGoogle Scholar
  63. Ordy, J. M., Brizzee, K. R., Wengenack, T. M., and Dunlap, W. P. (1991) Age-related macular degeneration (AMD) in the retina of the aged rhesus monkey. Invest. Ophthalmol. Vis. Sci. (Suppl.) 32: 1174.Google Scholar
  64. Palozza, P., and Krinsky, N. I. (1991) The inhibition of radical-initiated peroxidation of microsomal Hpids by both a-tocopherol and carotene. Free Radical Biology & Medicine 11: 407–414.CrossRefGoogle Scholar
  65. Sapp, R. J., Christianson, J. S., Maier, L., Studer, K., and Stark, W. S. (1991) Carotenoid replacement therapy in drosophila: recovery of membrane, opsin and visual pigment. Exp. Eye Res. 53: 73–79.PubMedCrossRefGoogle Scholar
  66. Sickel, W. (1972) Retinal metaboHsm in dark and light. Handbook of Sensory Physiology 7. pp. 667–727.CrossRefGoogle Scholar
  67. Snodderly, D. M., Brown, P. K., Delori, F. C., and Auran, J. D. (1984a) The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest. Ophthalmol. Vis. Sci. 25: 660–673.PubMedGoogle Scholar
  68. Snodderiy, D. M., Auran, J. D., and Delori, F. C. (1984b) The macular pigment. II. Spatial distribution in primate retinas. Invest. Ophthalmol. Vis. Sci. 25: 674–685.Google Scholar
  69. Snodderly, D. M., Handelmann, G. J., and Adler, A. J. (1991) Distribution of individual macular pigment carotenoids in central retina of Macaque and Squirrel monkey. Invest. Ophthalmol. Vis. Sci. 32: 268–279.PubMedGoogle Scholar
  70. Sperduto, R. D., Ferris, F. L., and Kurinij, N. (1990) Do we have a treatment for age-related cataract or macular degeneration? Arch. Ophthalmol. 108: 1403–1404.PubMedCrossRefGoogle Scholar
  71. Sperduto, R. (1991) The eye disease case-control study. NEI symposium on Eye Disease Epidemiol., Third National Eye Institute Symposium on Eye Disease Epidemiology - March 25–27, Bethesda, MD.Google Scholar
  72. Stone, W. L., Famsworth, C. C., and Dratz, E. A. (1979) A reinvestigation of the fatty acid content of bovine, rat and frog outer segments. Exp. Eye Res. 28: 387–397.PubMedCrossRefGoogle Scholar
  73. Taylor, H. R., Munoz, B., West, S., Bressler, N. M., Bressler, S. B., and Rosenthal, F. S. (1990) Visible light and risk of age-related macular degeneration. Tr. Am. Ophth. Soc. 88: 165–177.Google Scholar
  74. Terao, J. (1989) Antioxidant activity of beta-carotene-related carotenoids in solution. Lipids 24: 659–661.PubMedCrossRefGoogle Scholar
  75. Truscott, T. G. (1991) personal communication.Google Scholar
  76. Tso, M. O. M. (1985) Pathogenetic factors of aging macular degeneration. Ophthalmology 92: 628–635.PubMedGoogle Scholar
  77. Tso, M. O. M. (1989) Experiments on visual cells by nature and man: in search of treatment for photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 30: 2430–2454.PubMedGoogle Scholar
  78. Wald, G. (1945) Human vision and the spectrum. Science 101: 653–658.PubMedCrossRefGoogle Scholar
  79. Weiter, J. J., Delori, F., and Dorey, C. K. (1988) Central sparing in annular macular degeneration. Am. J. Ophthalmol. 106: 286–292.PubMedCrossRefGoogle Scholar
  80. Werner, J. S., Steele, V. G., and Pfoff, D. S. (1989) Loss of human photoreceptor sensitivity associated with chronic exposure to radiation. Ophthalmology 96: 1552–1558.PubMedGoogle Scholar
  81. West, S. K., Rosenthal, F. S., Bressler, N. M., Bressler, S. B., Munoz, B., Fine, S. L., and Taylor, H. R. (1989) Exposure to sunhght and other risk factors for age-related macular degeneration. Arch. Ophthalmol. 107: 875–879.PubMedCrossRefGoogle Scholar
  82. Yoser, S. L., and Heckenlively, J. R. (1989) The appearance of retinal crystals in retinitis pigmentosa patients using beta-carotene. Invest. Ophthalmol. Vis. Sci. (Suppl.) 30: 305.Google Scholar
  83. Young, R. W. (1988) Solar radiation and age-related macular degeneration. Survey Ophthalmol. 32: 252–269.CrossRefGoogle Scholar
  84. Yu, N.-T., Cai, M.-Z., Lee, B.-S., Kuck, J. F. R., McFall-Ngai, M., and Horwitz, J. (1991) Resonance raman detection of a carotenoid in the lens of the deep-sea hatchetfish. Exp. Eye Res. 52: 475–479.PubMedCrossRefGoogle Scholar
  85. Zigler, J. S., and Hess, H. H. (1985) Cataracts in the Royal College of Surgeons Rat: evidence for initiation by lipid peroxidation products. Exp. Eye Res. 41: 67–76.PubMedCrossRefGoogle Scholar
  86. Zimmermann, W. F., and Keys, S. (1991) Effects of the antioxidants dithiothreitol and vitamin E on phospholipid metabolism in isolated rod outer segments. Exp. Eye Res. 52: 607–612.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • Wolfgang Schalch
    • 1
  1. 1.Vitamins & Fine Chemical Division, F. Hoffmann — La RocheHuman Nutrition ResearchBaselSwitzerland

Personalised recommendations