Advertisement

Effect of photooxidation on the eye lens and role of nutrients in delaying cataract

  • Allen Taylor
Chapter
Part of the EXS book series (EXS, volume 62)

Summary

The function of the eye lens is to collect and focus light on the retina. To do so, it must remain clear during the decades of life. Upon aging, lens constituents are damaged and precipitate in opacities called senile cataracts. Laboratory and epidemiologic data indicate that the damage is due in part to light and active forms of oxygen. Antioxidant nutrients — ascorbate, carotenoids, and tocopherol — appear to offer protection against cataract.

Fifty million persons worldwide are blind due to cataract, and, in the U.S., there are 1.2 million cataract surgeries performed at an annual cost (including physician visits) of over $3.2 billion. It has been estimated that a 10-year delay in the development of cataract would eliminate the need for half the surgeries. Since it will not be possible to replace most of the damaged lenses, it is essential to determine the efficacy of supplying adequate levels of antioxidant nutrients early in life to preserve lens function.

Keywords

Cataract Extraction Cataract Formation Lens Epithelial Cell Lens Protein Antioxidant Nutrient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellows, J. (1936) Biochemistry of the lens. V. Cevitamic acid content of the blood and urine of subjects with senile cataract. Arch. Ophthalmol. 15: 78–83.CrossRefGoogle Scholar
  2. Berger, J., Eisenhauer, D., and Taylor, A. (1988a) Intracellular protein degradation in cultured bovine lens epithehal cells. In Vitro Cell. Dev. Biol. 24: 990–994.CrossRefGoogle Scholar
  3. Berger, J., Shepard, D., Morrow, F., Sadowski, J., Haire, T., and Taylor, A. (1988b) Reduced and total ascorbate in guinea pig eye tissues in response to dietary intake. Curr. Eye Res. 7: 681–686.PubMedCrossRefGoogle Scholar
  4. Berger, J., Shepard, D., Morrow, F., and Taylor, A. (1989) Relationship between dietary intake and tissue levels of reduced and total vitamin C in the nonscorbutic guinea pig. J. Nutr. 119: 734–740.PubMedGoogle Scholar
  5. Berman, E. R. (1991) in: Biochemistry of the Eye. Plenum Press, New York.Google Scholar
  6. Bhuyan, D. K., Podos, S. M., Machlin, L. T., Bhagavan, H. N., Chondhury, D. N., Soja, W. S., and Bhuyan, K. C. (1983) Antioxidant in therapy of cataract II: Effect of all-roc-alpha- tocopherol (vitamin E) in sugar-induced cataract in rabbits. Invest. Ophthalmol. Vis. Sci. 24: 74.Google Scholar
  7. Bhuyan, K. C., and Bhuyan, D. K. (1984) Molecular mechanism of cataractogenesis: III. Toxic metabolites of oxygen as initiators of lipid peroxidation and cataract. Curr. Eye Res. 3: 67–81.PubMedCrossRefGoogle Scholar
  8. Blondin, J., Baragi, V. J., Schwartz, E., Sadowski, J., and Taylor, A. (1986) Delay of UV-induced eye lens protein damage in guinea pigs by dietary ascorbate. Free Radical Biol. Med. 2: 275–281.CrossRefGoogle Scholar
  9. Blondin, J., and Taylor, A. (1987a) Measures of leucine aminopeptidase can be used to anticipate UV-induced age-related damage to lens proteins: ascorbate can delay this damage. Mech. Ageing Dev. 41: 39–46.PubMedCrossRefGoogle Scholar
  10. Blondín, J., Baragi, V. J., Schwartz, E., Sadowski, J., and Taylor, A. (1987b) Dietary vitamin C delays UV-induced age-related eye lens protein damage, in: Vitamin C. Ann. N.Y. Acad. Sci., New York, vol. 498, pp. 460–463.CrossRefGoogle Scholar
  11. Bochow, T. W., West, S. K., Azar, A., Mouqoz, B., Sommer, A., and Taylor, H. R. (1989) Ultraviolet light exposure and risk of posterior subcapsular cataracts. Arch. Ophthalmol. 107:369–372.PubMedCrossRefGoogle Scholar
  12. Brilliant, L. B., Grasset, N. C., Pokhrel, R. P., Kolstad, A., Lepkowski, J. M., Brilliant, G. E., Hawks, W. N., and Pararajasegaram, R. (1983) Associations among cataract prevalence. Sunlight hours, and altitude in the Himalayas. Am. J. Epidemiol. 118: 250–264.PubMedGoogle Scholar
  13. Bunce, G. E., Kinoshita, J., and Horwitz, J. (1990) Nutritional factors in cataract. Ann. Rev. Nutr. vol. 10 pp. 233–254.CrossRefGoogle Scholar
  14. Costagliola, C., Ivliano, G., Menzione, M., Rinaldi, E., Vito, P., and Auricchhio, G. (1986) Effect of vitamin E on glutathione content in red blood cells, aqueous humor and lens of humans and other species. Exp. Eye Res. 43: 905–914.PubMedCrossRefGoogle Scholar
  15. Creighton, M. O., Ross, W. M., Stewart-DeHaan, P. J., Sanwai, M., and Trevithick, J. R. (1985) Modeling cortical cataractogenesis. VII: Effects of vitamin E treatment on galactose- induced cataracts. Exp. Eye Res. 40: 213–222.PubMedCrossRefGoogle Scholar
  16. Devamanoharan, P. S., Henein, M., Morris, S., Ramachandran, S., Richards, R. D., and Varma, S. D. (1991) Prevention of selenite cataract by vitamin C. Exp. Eye Res. 52: 563–568.PubMedCrossRefGoogle Scholar
  17. Eisenhauer, D. A., Berger, J. J., Peltier, C. Z., and Taylor, A. (1988) Protease activities in cultured beef lens epithelial cells peak and then decline upon progressive passage. Exp. Eye Res. 46: 579–590.PubMedCrossRefGoogle Scholar
  18. Flaye, D. E., Sullivan, K. N., CulHnan, T. R., Silver, J. H., and Whitelocke, R. A. F. (1989) Cataracts and cigarette smoking: the City Eye Study. Eye 3: 379–384.PubMedCrossRefGoogle Scholar
  19. Fleshman, K. R., and Wagner, B. J. (1984) Changes during aging in rat lens endopeptidase activity. Exp. Eye Res. 39: 543–551.PubMedCrossRefGoogle Scholar
  20. Frei, B., Stocker, R., and Ames, B. N. (1988) Antioxidant defenses and lipid peroxidation in human blood plasma. Proc. Natl. Acad. Sci., USA 85: 9748–9752.PubMedCrossRefGoogle Scholar
  21. Giblin, F. J., Schrimscher, L., Chakrapani, B., and Reddy, V. N. (1988) Exposure of rabbit lens to hyperbaric oxygen in vitro: regional effects on GSH level. Invest. Ophthalmol. Vis. Sci. 29: 1312–1319.PubMedGoogle Scholar
  22. Guomin, W., Spector, A., Lus, C.-q., Tang, L.-q., Xu, L.-h., Guo, W.-Y., and Huang, Y. (1990) Prevalence of age-related cataract in Ganzi and Shanghai. Chinese Med. J. 103: 945–951.Google Scholar
  23. Harding, J. J., and van Heyningen, R. (1987) Epidemiology and risk factors for cataract. Eye 1: 537–541.PubMedCrossRefGoogle Scholar
  24. Harding, J. J. (1981) Changes in lens proteins in cataract, in: Molecular and Cellular Biology of the Eye Lens. pp. 327–366. Ed. H. Bloemendal, John Wiley and Sons, New York.Google Scholar
  25. Hoenders, H. J., and Bloemendal, H. (1981) Aging of lens proteins, in: Molecular and Cellular Biology of the Eye Lens, pp. 279–326. Ed. H. Bloemendal, John Wiley and Sons, New York.Google Scholar
  26. Huang, L. L., Jahngen-Hodge, J., and Taylor, A. (1992) Bovine lens epithehal cells have a ubiquitin-dependent proteolysis system. (Manuscript submitted).Google Scholar
  27. Jacques, P. F., Chylack, L. T., Jr., McGandy, R. B., and Hartz, S. C. (1988) Antioxidant status in persons with and without senile cataract. Arch. Ophthalmol. 106: 337–340.PubMedCrossRefGoogle Scholar
  28. Jacques, P. F., and Chylack, L. T., Jr. (1991) Epidemiologic evidence of a role for the antioxidant vitamins and carotenoids in cataract prevention Am. J. Clin. Nutr. 53: 352S-355S.PubMedGoogle Scholar
  29. Jacques, P. F., and Taylor, A. 1991. Micronutrients and age-related cataracts, in: Micronutri- ents in Health and in Disease Prevention. Eds A. Bendich and C. E. Butterworth. Marcel Dekker, Inc., New York.Google Scholar
  30. Jahngen, J. H., Lipman, R. D., Eisenhauer, D. A., Jahngen, E. G. E., Jr., and Taylor, A. (1990) Aging and cellular maturation cause changes in ubiquitin-eye lens protein conjugates. Arch. Biochem. Biophys. 276: 32–37.PubMedCrossRefGoogle Scholar
  31. Jahngen-Hodge, J. H., Laxman, E., Zuliani, A., and Taylor, A. (1991) Evidence for ATP ubiquitin-dependent degradation of proteins in cultured bovine lens epithelial cells. Exp. Eye Res. 52: 341–347.PubMedCrossRefGoogle Scholar
  32. Jahngen-Hodge, J. H., Cyr, D., Laxman, E., and Taylor, A. Ubiquitin and ubiquitin conjugates in human lens. (1992) Exp. Eye. Res. in press.Google Scholar
  33. Kosegarten, D. C., and Mayer, T. J. (1978) Use of guinea pigs as model to study galactose- induced cataract formation. J. Pharm. Sci. 67: 1478–1479.PubMedCrossRefGoogle Scholar
  34. Kuck, J. F. R. Jr. Composition of the lens. (1974) in: Cataract and Abnormalities of the Lens, vol. 26, pp. 69–96. Ed. J. G. Bellows. Grune & Stratton, Inc., New York.Google Scholar
  35. Leske, M. C., and Sperduto, R. D. (1983) The epidemiology of senile cataracts: a review. Am. J. Epidem. 118: 152–165.Google Scholar
  36. Leske, M. C., Chylack, L. T., and Wu, S.-Y. (1991) The lens opacities case-control study risk factors for cataract. Arch. Ophthalmol. 109: 244–251.PubMedCrossRefGoogle Scholar
  37. Levine, M. (1986) New concepts in the biology and biochemistry of ascorbic acid. New Eng. J. Med. 314: 892–902.PubMedCrossRefGoogle Scholar
  38. Lipman, R. D., Cyr, D. E., David, L. L., and Taylor, A. (1991) Calpain in cultured bovine lens eptithelial cells. Curr. Eye Res. 10: 11–17.PubMedCrossRefGoogle Scholar
  39. Machhn, L. J. and Bendich, A. (1987) Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1: 441–445.Google Scholar
  40. Martenssen, J., Steinherz, R., Jain, A., and Meister, A. (1989) Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithehal cell damage. Biochem. 86: 8727–8731.Google Scholar
  41. McBride, J. (1985) Congressional Record, Congressional Subcommittee on Health and Long Term Care. October 1985.Google Scholar
  42. McLaren, D. S. (1980) in: Nutritional Ophthamology, 2nd ed.. Academic Press, London.Google Scholar
  43. Mohan, M., Sperduto, R. D., Angra, S. K., Milton, R. C., Mathur, R. L., Underwood, B., Jaifery, N., and Pandya, C. B. (1989) India-US case-control study of age-related cataracts. Arch. Ophthalmol. 107: 670–676.PubMedCrossRefGoogle Scholar
  44. Muller, H. K., and Buschke, W. (1934) Vitamin C in hnse, kammerwasser und blut normalem und pathologischem hnsentstoifwech. Arch. F. Augenh. 108: 368–390.Google Scholar
  45. Murakami, K., Jahngen, J. H., Lin, S. W., Davies, K. J. A., and Taylor, A. (1990) Lens proteasome shows enhanced rates of degradation of hydroxy radical modified alpha-crystalhn. Free Radical Biol. Med. 8: 217–222.CrossRefGoogle Scholar
  46. Nakamura, B., and Nakamura, O. (1935) Ufer das vitamin C in der hnse und dem kammerwasser der menschlichen katarakte. Graefes Arch. Chn. Exp. Ophthalmol. 134: 197–200.Google Scholar
  47. Nishigori, H., Lee, J. W., Yamauchi, Y., and Iwatsuru, M. (1986) The alteration of lipid peroxide in glucocorticoid-induced cataract of developing chick embryos and the effect of ascorbic acid. Curr. Eye Res. 5: 37–40.PubMedCrossRefGoogle Scholar
  48. Palmquist, B., Philipson, B., and Barr, P. (1984) Nuclear cataract and myopia during hyperbaric oxygen therapy. Br. J. Ophthalmol. 68: 113–117.PubMedCrossRefGoogle Scholar
  49. Rathbun, W. B., Holleschau, A. M., Murray, D. L., Buchanan, A., Sawaguchi, S., and Tao, R. v. (1990) Glutathione synthesis and glutathione redox pathways in naphthalene cataract in the rat. Curr. Eye Res. 9: 45–53.PubMedCrossRefGoogle Scholar
  50. Ray, K., and Harris, H. (1985) Purification of neutral lens endopeptidase: close similarity to neutral proteinase in pituitary. Proc. Nat. Acad. Sci. USA 82: 7545–7549.PubMedCrossRefGoogle Scholar
  51. Reddy, V. N. (1990) Glutathione and its function in the lens - an overview. Exp. Eye Res. 150: 771–778.CrossRefGoogle Scholar
  52. Robertson, J. M. D., Donner, A. P., and Trevithick, J. R. (1989) Vitamin E intake and risk for cataracts in humans. Ann. N.Y. Acad. Sci. 570: 372–382.PubMedCrossRefGoogle Scholar
  53. Schectman, G., Byrd, J. C., and Gruchow, H. W. (1989) The influence of smoking on vitamin C status in adults. Am. J. Health 79: 158–162.CrossRefGoogle Scholar
  54. Schocket, S. S., Esterson, J., Bradford, B., Michaehs, M. R., and Richards, R. D. (1972) Induction of cataracts in mice by exposure to oxygen. Israel J. Med. 8: 1596–1601.Google Scholar
  55. Srivastava, S. K., and Ansari, N. H. (1988) Prevention of sugar-induced cataractogenesis in rats by butylated hydroxytoluene. Diabetes 37: 1505–1508.PubMedCrossRefGoogle Scholar
  56. Taylor, A., Daims, M. A., Brown, M. J., and Cohen, J. (1983) Localization of leucine aminopeptidase in hog lenses using immunofluorescence and activity assays. Invest. Ophthalmol. Vis. Sci. 24: 1172–1181.PubMedGoogle Scholar
  57. Taylor, A., and Davies, K. J. A. (1987) Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radical Biol. Med. 3: 371–377.CrossRefGoogle Scholar
  58. Taylor, A. (1989) Associations between nutrition and cataract. Nutr. Rev. 47: 225–234.PubMedCrossRefGoogle Scholar
  59. Taylor, A., Zuhani, A. M., Hopkins, R. E., Dallal, G. E., Tregha, P., Kuck, J. F. R., and Kuck, K. A. (1989) Moderate caloric restriction delays cataract formation in the Emory mouse. FASEB J. 3: 1741–1746.PubMedGoogle Scholar
  60. Taylor, A., Jacques, P. F., Nadler, D., Morrow, F. Sulsky, S. I., and Shepard, D. (1991a) Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma. Curr. Eye Res. 10: 751–759.PubMedCrossRefGoogle Scholar
  61. Taylor, A., Jahngen-Hodge, J., Huang, L. L., and Jacques, P. (1991b) Aging in the eye lens: Roles for proteolysis and nutrition in formation of cataract. AGE 14: 65–71.CrossRefGoogle Scholar
  62. Taylor, A. (1992) Vitamin C, in: Nutritional Status Survey of the Elderly: The Boston Study. Eds S. C. Hartz, R. M. Russell, and I. H. Rosenberg. Smith Gordon Limited, London (in press).Google Scholar
  63. Taylor, A., Jacques, P. F., and Dorey, K. D. (1992) Oxidation and aging: Impact on vision, in: Proceedings of the International Conference on Antioxidants. Princeton Scientific Press, Princeton, NJ.Google Scholar
  64. Taylor, H. R., West, S. K., Rosenthal, F. S., Munoz, B., Newland, H. S., Abbey, H., and Emmett, E. A. (1988) Effect of ultraviolet radiation on cataract formation. New Eng. J. Med. 319: 1429–1433.PubMedCrossRefGoogle Scholar
  65. Third National Eye Institute Symposium on Eye Disease Epidemiology. (1991) National Eye Institute, National Institutes of Health.Google Scholar
  66. U.S. Dept. of Health and Human Services, Report of the Cataract Panel. (1983) Vol. 2, Pt. 3. Vision Research, A National Plan. NIH publication no. 83–2473. Washington, DC: U.S. Department of Health and Human Services.Google Scholar
  67. Varma, S. D., Chand, O., Sharma, Y. R., Kuck, J. F., and Richards, K. D. (1984) Oxidative stress on lens cataract formation. Role of light and oxygen. Curr. Eye Res. 3: 35–57.PubMedCrossRefGoogle Scholar
  68. Varnum, M. D., David L. L., and Shearer, T. R. (1989) Age-related changes in calpain II and calpastatin in rat lens. Exp. Eye Res. 49: 1053–1065.PubMedCrossRefGoogle Scholar
  69. Vina, J., Perez, C., Furukawa, T., Palacin, M., and Vina, J. R. (1989) Effect of oral glutathione on hepatic glutathione levels on rats and mice. Br. J. Nutr. 62: 683–691.PubMedCrossRefGoogle Scholar
  70. Vinson, J. A., Possanza, C. J., and Drack, A. V. (1986) The effect of ascorbic acid on galactose-induced cataracts. Vol. 33, Nutr. Reports Int. pp. 665–668.Google Scholar
  71. Wefers, H., and Seis, H. (1988) The protection of ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur. J. Biochem. 174: 353–357.PubMedCrossRefGoogle Scholar
  72. West, S. K., Munoz, B., Emmett, E. A., and Taylor, H. R. (1989) Cigarette smoking and risk of nuclear cataracts. Arch. Ophthalmol. 107: 1166–1169.PubMedCrossRefGoogle Scholar
  73. West, S. K. (1991) Who develops cataracts? Arch. Ophthalmol. 109: 196–197.PubMedCrossRefGoogle Scholar
  74. Wilczek, M., and Zygulska-Machowa, H. (1968) Zawartosc witaminy C W. roznych typack zaem. J. Klin. Oczna 38: 477–480.Google Scholar
  75. Yoshida, H., Murachi, T., and Tsukahara, I. (1989) Distribution of calpain I, calpain II, and calpastatin in bovine lens. Invest. Ophthalmol. Vis. Sci. 26: 953–956.Google Scholar
  76. Zigler, J. S., and Goosey, J. D., (1984) Singlet oxygen as a possible factor in human senile nuclear cataract development. Curr. Eye Res. 3: 59–65.PubMedCrossRefGoogle Scholar
  77. Zigman, S. (1983) The role of sunlight in human cataract formation. Surv. Ophthalmol. 27: 317–326.PubMedCrossRefGoogle Scholar
  78. Zigman, S., Paxhia, T., McDaniel, T., Lou, M. F., and Yu, N. -T. (1991) Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo. Inv. Ophthalmol. Vis. Sci. 32: 1723–1732.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • Allen Taylor
    • 1
  1. 1.Laboratory for Nutrition and Vision ResearchUSDA Human Nutrition Research Center on Aging at Tufts UniversityBostonUSA

Personalised recommendations