Assessing and counteracting the prooxidant effects of anticancer drugs

  • Pierre Bienvenu
  • Laurent Caron
  • Didier Gasparutto
  • Jean-François Kergonou
Part of the EXS book series (EXS, volume 62)


The relationship between peroxide generation and respective cellular damage, triggering various biochemical consequences is first discussed. Then we review the prooxidant effects of various anticancer drugs including anthracyclines and bleomycin, platinum derivatives and the N- and S-mustards. We present and discuss some experimental results on peroxidase inhibition by drugs such as zinc salts, almitrine, deferoxamine, which had previously been tested as efficient in vivo treatment on chlormethine intoxication. In an overview we propose that not only ionizing radiations and anticancer drugs, but also promoters and initiators of cancer might all generate free radicals, in turn triggering oxidative processes generating endogenous peroxides, then probably amplifying the deleterious biological response. The possible limitations of drug therapies decreasing peroxide generation are presented.


Anticancer Drug Sulfur Mustard Cumene Hydroperoxide Zinc Salt Prooxidant Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atzori, L., Gotgreave, L, and Moldeus, P. (1990) Critical events in the toxicity of redox active drugs, in: Selective Activation of Drugs by Redox Processes, pp. 229–235. Eds G. E. Adams, A. Breccia, E. M. Fielden and P. Wardmam. Plenum Press, New York.CrossRefGoogle Scholar
  2. Bailey, G., and Blackledge, G. (1990), Cytostatics and immunosuppressive drugs, in: Side Effects of Drugs Annual, Vol. 14, pp. 397–420. Eds M. N. G. Dukes and L. Belley. Elsevier, Amsterdam.Google Scholar
  3. Bates, D. A., and Winterbourn, C. C. (1982) Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation. FEBS Lett. 145: 137–142.PubMedCrossRefGoogle Scholar
  4. Bienvenu, P., and Kergonou, J. F. (1990) Antagonism or synergy among iron, copper and zinc, in: Metal Ions in Biology and Medicine, pp. 545–548. Eds Ph. Collery et al. J. Libbey-eurotext, Paris.Google Scholar
  5. Bienvenu, P., Herodin, F., Therin, J.-Y., and Fatome, M. (1990) Antioxidant effects in radioprotection, in: Antioxidants in Therapy and Preventive Medicine, pp. 291–300. Eds I. Emerit, L. Packer and C. Auclair. Plenum Press, New York.CrossRefGoogle Scholar
  6. Bompart, G. (1990) Cisplatin-induced changes on cytochrome P-450, lipid peroxidation and some P-450 related specific catalytic activities in rat liver. J. Toxicol. Clin. Experim. 10: 375–383.Google Scholar
  7. Borch, R. F. (1987) The platinum anti-tumor drugs, in: Metabolism and Action of Anticancer Drugs, pp. 162–193. Eds G. Powis and R. A. Prough. Taylor and Francis, London.Google Scholar
  8. Cerutti, P. A. (1985) Prooxidant states and tumor promotion. Science 227: 375–381.PubMedCrossRefGoogle Scholar
  9. Cohen, G. M., and D’Arcy Doherty, M. (1987) Free radical mediated cell toxicity by redox-cycling chemicals. Cancer 55 Suppl. VIII: 46–52.Google Scholar
  10. D’Alessandro, N. D., Dusonchet, L., Crosta, L., Crescimanno, M., and Rausa, L. (1980) Does catalase play a role in Adriamycin-induced cardiotoxicity. Pharmacol. Res. Commun. 12: 441–446.PubMedCrossRefGoogle Scholar
  11. Daugherty, J. P., Wheat, M., Conley, S., Cooley, E., Vanzant, C., Loggins, L., and Durant, J. R. (1982) Involvement of reactive oxygen species in Adriamycin (ADR) cardiotoxicity Proc. Am. Ass. Cancer Res. 23: 171, cited in: Archakov, A. I. and Bachmanova, G. 1. (1990), Cytochrome P-450 and Active Oxygen. Taylor and Francis, London.Google Scholar
  12. Demant, E. J. F. (1984) Transfer of ferritin-bound ion to adriamycin. FEBS Lett. 176: 97–100.PubMedCrossRefGoogle Scholar
  13. Emerit, I., and Cerutti, P. A. (1982) Tumor promoter phorbol 12-myristate 12-acetate induces a clastogenic factor in human lymphocytes. Proc. Natl. Acad. Sci. USA 79: 7509–7513.PubMedCrossRefGoogle Scholar
  14. Gemba, M., and Sugihara, K. (1986) Evaluation of cisplatin-induced lipid peroxidation in rat renal tissues by means of slice technique, in: Nephrotoxicity of Antiobiotics and Immunosuppressants, pp. 167–177. Eds. T. Tanabe, J. B. Hook and H. Endou. Elsevier, Amsterdam.Google Scholar
  15. Gerritsen Van der Hoop, R., Vecht, C. J., Van der Burg, M. E. L., Elderson, A., Boogerd, W., Heimans, J. J., Vries, E. P., Van Houweling, J. C., Jennekens, F. G. L, Gipsen, W. H., and Neijt, J. P. (1990) Prevention of cisplatin neurotoxicity with an ACTH (4–9) analogue in patients with ovarian cancer. N. Engl. J. Med. 322: 89–94.PubMedCrossRefGoogle Scholar
  16. Gonias, S. L., Oakley, A. C., Walther, P. J., and Pizzo, S. V. (1984) Effects of diethyldithiocarbamate and nine other nucleophiles on the intersubunit protein cross-linking and inactivation of purified human alpha-2-macroglobulin by cis-diamminedichloroplatinum (II). Cancer Res. 44: 5764–1673.PubMedGoogle Scholar
  17. Halliwell, B., and Gutteridge, J. M. C. (1989) Free Radicals in Biology and Medicine, Clarendon Press, Oxford.Google Scholar
  18. Heddle, J. A., Khan, M. A., Urlando, C., and Pagura, M. E. (1991) Measuring gene mutation in vivo, in: New Horizons in Biological Dosimetry, pp. 281–289. Eds B. L. Gledhill and F. Mauro. Wiley-Liss, Inc, New York.Google Scholar
  19. Horsman, M. R., Hirst, D. G., Brown, D. M., and Brown, J. M. (1984) Modification of alkylating agent cytotoxicity by cisplatin. Int. J. Radiat. Oncol. Biol. Phys, 10: 1669–1673.PubMedCrossRefGoogle Scholar
  20. Hyslop, P. A., Hinshaw, I. D. B., Halsey, W. A., Jr, Schraufstatter, I. U., Sauerheber R. D., Spragg, R. G., Jackson, R. G., and Cochrane, C. G. (1988) Mechanisms of oxidant mediated cell injury. J. Biol. Chem. 263: 1665–1675.PubMedGoogle Scholar
  21. Kalyanaraman, B., Perez-Reves, E., and Mason, R. P. (1989) Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim. Biophys. Acta 630: 119–130.CrossRefGoogle Scholar
  22. Kimball, R. F., Haron, J. Z., and Gaither, N. (1955) Tests for a role of H2O2 in X-ray mutagenesis 11. Attempts to induce mutations by peroxide. Radiation Res. 3: 435–443.PubMedCrossRefGoogle Scholar
  23. Kobayashi, S., Ueda, K., Morita, J., and Komano, T. (1988) DNA damage induced by free radicals generated from hydroperoxides, in: Medical, Biochemical and Chemical Aspects of Free Radicals, pp. 1513–1516. Eds O. Hayaishi, E. Niki, M. Kondo and T. Yoshiawa. Elsevier, Amsterdam.Google Scholar
  24. Kolodziejczyk, P., and Lown, I. W. (1990) Peroxidase-induced metabohsm and lipid peroxide scavenging by antitumor agents, in: Antioxidants in Therapy and Preventive Medicine, pp. 323–338. Eds I. Emerit, L. Packer and C. Auclair. Plenum Press, New York.CrossRefGoogle Scholar
  25. Kovacs, C. J., Evans, M. J., Hooker, J. L., and Jonhke, R. M. (1988) Long-term consequences of chemotherapeutic agents on hematopoiesis: development of altered radiation tolerance. NCI Monogr. 6: 45–49.PubMedGoogle Scholar
  26. Lazo, J. S., Sebti, S. M., and Filderman, A. E. (1987) Metabohsm of bleomycin and bleomycin-hke compounds, in: Metabolism and Action of Anticancer Drugs, pp. 194–210. Eds G. Powis and R. A. Prough. Taylor and Francis, London.Google Scholar
  27. Link, E. M. (1992) Mechanism of H2O2 cytotoxicity and its resemblance to cell damage by ionzing radiation. Abstracts of the SFRR/ARR Meeting, Manchester, Jan. 6–8: 1992.Google Scholar
  28. Lown, J. W., and Sim, S. K. (1977) The mechanism of the bleomycin-induced cleavage of DNA. Biochim. Biophys. Acta 77: 1150–1157.Google Scholar
  29. Masaki, N., Kyle, M. E., and Farber, J. L. (1989) Tert-butylhydroperoxide kills cultured hepatocytes by peroxidizing membrane hpids, Archs Biochem. Biophys. 269: 390–399.CrossRefGoogle Scholar
  30. Michaud-Soret, I., and Chottard, J. C. (1992) Investigation of sulfur containing amino acids at the hpoxygenase active site using a platinum complex. Biochem. Biophys. Res. Commun. 182: 779–785.PubMedCrossRefGoogle Scholar
  31. Mimnaugh, E. G., Gram, T. E., and Trush, M. A. (1983) Stimulation of mouse heart and liver microsomal hpid peroxidation by athracycline drugs: characterization and effects of reactive oxygen scavengers. J. Pharmacol. Exp. Ther. 226: 806–816.PubMedGoogle Scholar
  32. Mimnaugh, E. G., Trush, M. A., Ginsburgl, E., and Gram, T. E. (1982) Differential effects of anthracychne drugs on rat heart and liver microsomal reduced nicotinamide dinucleotide phosphate-dependent hpid peroxidation. Cancer Res. 42: 3574–3582.PubMedGoogle Scholar
  33. Mimnaugh, E. G., Trush, M. A., and Gram, T. E. (1981) Stimulation of rat heart and hver microsomal NADPH-dependent hpid peroxidation. Biochem. Pharmacol. 30: 2797–2804.PubMedCrossRefGoogle Scholar
  34. Mollman, J. E. (1990) Cisplatin neurotoxicity. N. Engl. J. Med. 322: 126–127.PubMedCrossRefGoogle Scholar
  35. Papirmeister, B., Feister, A. J., Robinson, S. L, and Ford, R. D. (1991), Medical Defence Against Mustard Gas: Toxic Mechanisms and Pharmacological Implications. CRC Press, Boca Raton.Google Scholar
  36. Pihl, A., Eldjarn, L., and Bremer, J. (1957) On the mode of action of X-ray protective agents IIL The enzymatic reduction of disulfides. J. Biol. Chem. 227: 339.PubMedGoogle Scholar
  37. Powis, G. (1987) Anthracycline metabolism and free radical formation, in: Metabolism and Action of Anticancer Drugs, pp. 211–260. Eds G. Powis and R. A. Prough. Taylor and Francis, London.Google Scholar
  38. Roe, F. J. C. (1989) What is wrong with the way we test chemicals for carcinogenic activity, in: Advances in applied toxicology, pp. 1–17. Eds A. D. Dayan and A. J. Paine. Taylor and Francis, London.Google Scholar
  39. Sandstrom, B. E. (1991) Induction and rejoining of DNA single-strand breaks in relation to cellular growth in human cells exposed to three hydroperoxides to 0°C and 37°C. Free Rad. Res. Comms. 15: 79–89.CrossRefGoogle Scholar
  40. Schaich, K. M., and Borg, D. C. (1984) Radiomimetic effects of peroxidizing lipids on nucleic acids and their bases, in: Oxygen Radicals in Chemistry and Biology, pp. 603–606. Eds W. Bors, M. Saran and D. Tait. de Gruyter, Berlin.CrossRefGoogle Scholar
  41. Sies, H. (1991) Oxidative Stress: Oxidants and Antioxidants. Academic Press, London.Google Scholar
  42. Sweeney, J. D., Ziegler, P., Pruet, C., and Spaulding, M. B. (1989) Hyperzincuria and hypozincemia in patients treated with cisplatin. Cancer 63: 2093–2095.PubMedCrossRefGoogle Scholar
  43. Tait, D., Martin-Bertram, H., Hagen, U., and Bors, W. (1984) Influence of arachidonic acid on irradiation effects in a DNA model substance, in: Oxygen Radicals in Chemistry and Biology, pp. 607–610. Eds W. Bors, M. Saran and D. Tait. de Gruyter, Berlin.CrossRefGoogle Scholar
  44. Ursini, F., Maiorino, M., and Sevanian, A. (1991) Membrane Hydroperoxides, pp. 319–336, in: Sies, H., op. cit.Google Scholar
  45. Wieqiao, J., Shijie, C., Suzhen, M., Peifang, F., Min, L. Hao, Z., Yonghe, L., and Jiewei, H. (1990) Changes of cathepsin D and alpha 2 - macroglobuhn in rats after acute total body irradiation. Nucl. Sci. Tech. 1: 187–192.Google Scholar
  46. Yuhas, J. M., Spellman, J. M., Jordan, S. W., Pardini, M. C., Afzal, S. M. J., and Culo, F. (1980) Treatment of tumours with the combination of WR 2721 and cis-diammine dichloroplatinum (II) or cyclophosphamide. Br. J. Cancer 42: 574–585.PubMedCrossRefGoogle Scholar
  47. Yuhas, J. M. (1979) Differential protection of normal and malignant tissues against the cytotoxic effects of mechlorethamine. Cancer treat. Rep. 63: 971–976.PubMedGoogle Scholar
  48. Zajac, J. M., and Bernard, P. (1982) Effects of whole-body irradiation on the microsomal enzyme system and on cytochrome P-450 of rat liver. Enzymes 27: 19–24.Google Scholar
  49. Ziegler, D. M., and Kehrer, J. P. (1990) Oxygen radicals and drugs: in vitro measurements. Meth. Enzymol. 1986: 621–626.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • Pierre Bienvenu
    • 1
  • Laurent Caron
    • 1
  • Didier Gasparutto
    • 1
  • Jean-François Kergonou
    • 1
  1. 1.Unite de RadiobiochimieCentre de Recherches du Service de Santé des ArméesLa Tronche, GrenobleFrance

Personalised recommendations